BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4781070)

  • 1. Cation transport and membrane morphology.
    Kirk RG; Tosteson DC
    J Membr Biol; 1973; 12(3):273-85. PubMed ID: 4781070
    [No Abstract]   [Full Text] [Related]  

  • 2. Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology.
    Dunn MJ
    Biochim Biophys Acta; 1974 May; 352(1):97-116. PubMed ID: 4854055
    [No Abstract]   [Full Text] [Related]  

  • 3. Cation transport in erythrocytes of normal and porphyric cows: transmembrane fluxes of sodium and potassium.
    Keeton KS; Kaneko JJ
    Res Vet Sci; 1973 Nov; 15(3):285-92. PubMed ID: 4792008
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibitory effects of two potassium ionophores on ouabain-resistant potassium fluxes in reticulocyte cell membrane.
    Panet R; Atlan H
    FEBS Lett; 1979 Jul; 103(1):172-5. PubMed ID: 467647
    [No Abstract]   [Full Text] [Related]  

  • 5. A study of passive potassium efflux from human red blood cells using ion-specific electrodes.
    Morel FM
    J Membr Biol; 1973; 12(1):69-88. PubMed ID: 4205465
    [No Abstract]   [Full Text] [Related]  

  • 6. (Na+-K+)-activated ATPase in cattle erythrocytes.
    Ellory JC; Carleton S
    Biochim Biophys Acta; 1974 Sep; 363(3):397-403. PubMed ID: 4282249
    [No Abstract]   [Full Text] [Related]  

  • 7. Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes.
    Györgyi S; Blaskó K
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):97-105. PubMed ID: 4413344
    [No Abstract]   [Full Text] [Related]  

  • 8. Cation transport and energy metabolism in the high Na+, low K+ erythrocyte of the harbor seal, Phoca vitulina.
    Robin ED; Murdaugh HV; Cross CE; Smith J; Theodore J
    Comp Biochem Physiol A Comp Physiol; 1971 Aug; 39(4):807-21. PubMed ID: 4398992
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of thallous ions with the cation transport mechanism in erythrocytes.
    Skulskii IA; Manninen V; Järnefelt J
    Biochim Biophys Acta; 1973 Mar; 298(3):702-9. PubMed ID: 4268625
    [No Abstract]   [Full Text] [Related]  

  • 10. Resistance of active monovalent cation transport to pronase digestion of intact human erythrocytes.
    Wagner H; Smith TW; Young M
    Arch Biochem Biophys; 1974 Jul; 163(1):95-8. PubMed ID: 4277632
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of an antiserum to Na+, K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme.
    Glynn IM; Karlish SJ; Cavieres JD; Ellory JC; Lew VL; Jorgensen PL
    Ann N Y Acad Sci; 1974; 242(0):357-71. PubMed ID: 4279595
    [No Abstract]   [Full Text] [Related]  

  • 12. Anion transport and membrane morphology.
    Gunn RB; Kirk RG
    J Membr Biol; 1976; 27(3):265-82. PubMed ID: 7677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some aspects of sodium transport in chicken erythrocytes.
    Gökhan N; Oztas B
    Arch Int Physiol Biochim; 1974 Feb; 82(1):63-8. PubMed ID: 4137194
    [No Abstract]   [Full Text] [Related]  

  • 14. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes.
    Györgyi S; Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876
    [No Abstract]   [Full Text] [Related]  

  • 15. Erythrocyte sodium transport and membrane adenosine triphosphatase in patients with thermal injury.
    Helmkamp GM; Blackwell JP; Wilmore DW
    Clin Chim Acta; 1973 Aug; 47(1):5-12. PubMed ID: 4270608
    [No Abstract]   [Full Text] [Related]  

  • 16. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane.
    Haynes DH; Wiens T; Pressman BC
    J Membr Biol; 1974; 18(1):23-38. PubMed ID: 4855276
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of dimethyl sulfoxide-induced hemolysis.
    Norred WP; Ansel HC; Roth IL; Peifer JJ
    J Pharm Sci; 1970 May; 59(5):618-22. PubMed ID: 5446416
    [No Abstract]   [Full Text] [Related]  

  • 18. Sodium and potassium transport in camel red cells.
    Dakkuri A; Naccache P; Sha'afi RI
    Comp Biochem Physiol A Comp Physiol; 1972 Dec; 43(4):1019-23. PubMed ID: 4405335
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of sodium transport in erythrocytes.
    Schneider RP
    Arch Biochem Biophys; 1974 Feb; 160(2):552-60. PubMed ID: 4275464
    [No Abstract]   [Full Text] [Related]  

  • 20. The uncoupled extrusion of Na+ through the Na+ pump.
    Lew VL; Hardy MA; Ellory JC
    Biochim Biophys Acta; 1973 Oct; 323(2):251-66. PubMed ID: 4752285
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.