BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4781070)

  • 21. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. 8. The effect of membrane stabilizers on the transport of K + , Na + and glucose in muscle, adipocytes and erythrocytes.
    Clausen T; Harving H; Dahl-Hansen AB
    Biochim Biophys Acta; 1973 Mar; 298(2):393-411. PubMed ID: 4719137
    [No Abstract]   [Full Text] [Related]  

  • 22. Interactions between membrane functions and protein synthesis in reticulocytes. Effects of valinomycin and dicyclohexyl-18-crown-6.
    Herzberg M; Breitbart H; Atlan H
    Eur J Biochem; 1974 Jun; 45(1):161-70. PubMed ID: 4423569
    [No Abstract]   [Full Text] [Related]  

  • 23. The conformational basis of energy transformations in membrane systems. IV. Energized states and pinocytosis in erythrocyte ghosts.
    Penniston JT; Green DE
    Arch Biochem Biophys; 1968 Nov; 128(2):339-50. PubMed ID: 4235228
    [No Abstract]   [Full Text] [Related]  

  • 24. Red cell metabolism in the newborn infant. IV. Transmembrane potassium flux.
    Blum SF; Oski FA
    Pediatrics; 1969 Mar; 43(3):396-401. PubMed ID: 4237760
    [No Abstract]   [Full Text] [Related]  

  • 25. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport.
    Schatzmann HJ; Rossi GL
    Biochim Biophys Acta; 1971 Aug; 241(2):379-92. PubMed ID: 4258479
    [No Abstract]   [Full Text] [Related]  

  • 26. Active transport of Rb86 in human red cells and rat brain slices.
    Bernstein JC; Israel Y
    J Pharmacol Exp Ther; 1970 Aug; 174(2):323-9. PubMed ID: 5451367
    [No Abstract]   [Full Text] [Related]  

  • 27. Membrane ATP and the functional organization of the red cell Na:K pump.
    Hoffman JF; Proverbio F
    Ann N Y Acad Sci; 1974; 242(0):459-60. PubMed ID: 4279598
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane.
    Kaplan JH; Passow H
    J Membr Biol; 1974; 19(1):179-94. PubMed ID: 4431040
    [No Abstract]   [Full Text] [Related]  

  • 29. Cation movements in the high sodium erythrocyte of the cat.
    Sha'afi RI; Lieb WR
    J Gen Physiol; 1967 Jul; 50(6):1751-64. PubMed ID: 6034766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium and potassium content and membrane transport properties in red blood cells from newborn puppies.
    Miles PR; Lee P
    J Cell Physiol; 1972 Jun; 79(3):367-76. PubMed ID: 5039931
    [No Abstract]   [Full Text] [Related]  

  • 31. Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes.
    Wiley JS; Cooper RA
    Biochim Biophys Acta; 1975 Dec; 413(3):425-31. PubMed ID: 1191697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of sheep anti-L and certain cattle S-system reagents on active potassium transport in sheep and cattle red blood cells.
    Ellory JC; Tucker EM; Rasmusen BA
    Anim Blood Groups Biochem Genet; 1974; 5(3):159-65. PubMed ID: 4451295
    [No Abstract]   [Full Text] [Related]  

  • 33. The influence of the extracellular counter-ion on the sodium-dependent, ouabain-uninhibited sodium efflux from human erythrocytes.
    Dunn MJ; Grant R
    Biochim Biophys Acta; 1974 May; 352(1):117-21. PubMed ID: 4854899
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of iso-antibodies on membrane cation transport: the LK sheep erythrocytes as model cells.
    Lauf PK
    Haematologia (Budap); 1972; 6(3):259-67. PubMed ID: 4670236
    [No Abstract]   [Full Text] [Related]  

  • 35. Some aspects of the osmotic lysis of erythrocytes. 3. Comparison of glycerol permeability and lipid composition of red blood cell membranes from eight mammalian species.
    Wessels JM; Veerkamp JH
    Biochim Biophys Acta; 1973 Jan; 291(1):190-6. PubMed ID: 4684609
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of cell volume on potassium transport in human red cells.
    Poznansky M; Solomon AK
    Biochim Biophys Acta; 1972 Jul; 274(1):111-8. PubMed ID: 5044056
    [No Abstract]   [Full Text] [Related]  

  • 37. The red blood cell membrane as a model for targets of drug action.
    Bolis L
    Prog Drug Res; 1973; 17():59-107. PubMed ID: 4593393
    [No Abstract]   [Full Text] [Related]  

  • 38. Direct measurement of the membrane potential of Ehrlich ascites tumor cells: lack of effect of valinomycin and ouabain.
    Smith TC; Levinson C
    J Membr Biol; 1975; 23(3-4):349-65. PubMed ID: 1238575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ouabain on gluclose metabolism and on fluxes of sodium and potassium of human blood cells.
    Funder J; Wieth JO
    Acta Physiol Scand; 1967 Sep; 71(1):113-24. PubMed ID: 6056954
    [No Abstract]   [Full Text] [Related]  

  • 40. Protein disposition in biological membranes.
    Hendler RW
    Biomembranes; 1974; 5():251-73. PubMed ID: 4367986
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.