These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 478209)

  • 21. Ontogeny and localization of the alpha, beta, and gamma crystallins in newt eye lens development.
    McDevitt DS; Brahma SK
    Dev Biol; 1981 Jun; 84(2):449-54. PubMed ID: 20737883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallin synthesis in the lens rudiment of a strain of mice with congenital anophthalmia.
    Zwaan J; Silver J
    Exp Eye Res; 1983 Apr; 36(4):551-7. PubMed ID: 6343105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lens regeneration from cornea of larval Xenopus laevis in the presence of the lens.
    Reeve JG; Wild AE
    J Embryol Exp Morphol; 1978 Dec; 48():205-14. PubMed ID: 311375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lens structures exist transiently in development of transgenic mice carrying an alpha-crystallin-diphtheria toxin hybrid gene.
    Key B; Liu L; Potter SS; Kaur S; Akeson R
    Exp Eye Res; 1992 Aug; 55(2):357-67. PubMed ID: 1426068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunohistochemical studies of lens crystallins in the dysgenetic lens (dyl) mutant mice.
    Brahma SK; Sanyal S
    Exp Eye Res; 1984 Mar; 38(3):305-11. PubMed ID: 6373332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Changes in the cellular localization of gamma-crystallins in the lens differentiation process in amphibia].
    Mikhaĭlov AT; Takenov ZhA
    Ontogenez; 1983; 14(4):374-81. PubMed ID: 6353308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos.
    Offield MF; Hirsch N; Grainger RM
    Development; 2000 May; 127(9):1789-97. PubMed ID: 10751168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression.
    Mizuno N; Mochii M; Takahashi TC; Eguchi G; Okada TS
    Differentiation; 1999 Mar; 64(3):143-9. PubMed ID: 10234811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Immunochemical markers of embryonic lens differentiation in Rana temporaria. II. Immunohistochemical analysis of the manifestation and localization of individual classes of lens proteins].
    Gorgoliuk NA; Mikhaĭlov AT; Barabanov VM
    Ontogenez; 1978; 9(5):449-56. PubMed ID: 362299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ontogeny of the 35K epsilon crystallin during Rana temporaria lens development.
    Brahma SK; McDevitt DS; Defize LH
    Curr Eye Res; 1986 Oct; 5(10):739-43. PubMed ID: 3533430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of crystallin expression in human lens epithelial cells during differentiation in culture and in non-lenticular tissues.
    Reddy VN; Katsura H; Arita T; Lin LR; Eguchi G; Agata K; Sawada K
    Exp Eye Res; 1991 Sep; 53(3):367-74. PubMed ID: 1936173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of crystallin in developing chicken lens.
    Inoue T; Miyazaki J; Hirabayashi T
    Exp Eye Res; 1992 Jul; 55(1):1-8. PubMed ID: 1397119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Gamma- and beta-crystallin gene activation during lens morphogenesis in mice].
    Iakovlev MI; Platonov ES; Koniukhov BV
    Biull Eksp Biol Med; 1981 Oct; 91(10):482-4. PubMed ID: 7032622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ontogeny and localization of the lens crystallins in Xenopus laevis lens regeneration.
    Brahma SK; McDevitt DS
    J Embryol Exp Morphol; 1974 Dec; 32(3):783-94. PubMed ID: 4618568
    [No Abstract]   [Full Text] [Related]  

  • 36. Distinct roles of maf genes during Xenopus lens development.
    Ishibashi S; Yasuda K
    Mech Dev; 2001 Mar; 101(1-2):155-66. PubMed ID: 11231068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lens fiber cell differentiation and expression of crystallins in co-cultures of human fetal lens epithelial cells and fibroblasts.
    Nagineni CN; Bhat SP
    Exp Eye Res; 1992 Feb; 54(2):193-200. PubMed ID: 1559548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transdifferentiated embryonic neuroretina cells: an in vitro system to study crystallin aggregation process.
    Pircher R; Lawrence DA; Lorinet AM; Simonneau L
    Exp Eye Res; 1987 Dec; 45(6):947-60. PubMed ID: 3428406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallin synthesis by chick lens. II. Changes in synthetic activities of epithelial and fiber cells during embryonic development.
    Yoshida K; Katoh A
    Exp Eye Res; 1971 Mar; 11(2):184-94. PubMed ID: 5121740
    [No Abstract]   [Full Text] [Related]  

  • 40. Differential synthesis of crystallin and noncrystallin polypeptides during lens fiber cell differentiation in vitro.
    Beebe DC; Piatigorsky
    Exp Eye Res; 1976 Mar; 22(3):237-49. PubMed ID: 1269545
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.