These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 478209)

  • 41. Initial crystallin synthesis and lens fibre formation are independent of lens morphogenesis.
    Braverman M; Katoh A
    Nature; 1971 Apr; 230(5293):392-3. PubMed ID: 4927733
    [No Abstract]   [Full Text] [Related]  

  • 42. Ontogeny of human lens crystallins.
    Thomson JA; Augusteyn RC
    Exp Eye Res; 1985 Mar; 40(3):393-410. PubMed ID: 4065234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell division, cell elongation and the co-ordination of crystallin gene expression during lens morphogenesis in the rat.
    McAvoy JW
    J Embryol Exp Morphol; 1978 Jun; 45():271-81. PubMed ID: 353215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LENS FIBER DIFFERENTIATION AND GAMMA CRYSTALLINS: IMMUNOFLUORESCENT STUDY OF WOLFFIAN REGENERATION.
    TAKATA C; ALBRIGHT JF; YAMADA T
    Science; 1965 Mar; 147(3663):1299-301. PubMed ID: 14250323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decreased association of aged alpha crystallins with gamma crystallins.
    Takemoto LJ; Ponce AA
    Exp Eye Res; 2006 Oct; 83(4):793-7. PubMed ID: 16712838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential synthesis of rat lens proteins during development.
    Carper D; Russell P; Shinohara T; Kinoshita JH
    Exp Eye Res; 1985 Jan; 40(1):85-94. PubMed ID: 3979459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystallins during Xenopus laevis free lens formation.
    Kumar Brahma S; Grunz H
    Rouxs Arch Dev Biol; 1988 May; 197(3):190-192. PubMed ID: 28305564
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The subunit structure of chick lens crystallins and its relationship to their antigenic properties.
    Truman DE; Clayton RM; Burns AT; Campbell JC
    Indian J Ophthalmol; 1972 Jun; 20(2):55-62. PubMed ID: 4128683
    [No Abstract]   [Full Text] [Related]  

  • 49. Post-translational assembly of lens alpha-crystallin in the reticulocyte lysate and in Xenopus laevis oocytes.
    Asselbergs FA; Koopmans M; Van Venrooij WJ; Bloemendal H
    Eur J Biochem; 1978 Nov; 91(1):65-72. PubMed ID: 569053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions.
    Simonneau L; Hervé B; Jacquemin E; Courtois Y
    Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Induction of alpha- and beta-crystallin synthesis in organ cultures of the adenohypophyseal anlage of chickens as affected by 5-iododeoxyuridine and 5-bromodeoxyuridine].
    Fedtsova NG
    Ontogenez; 1986; 17(4):396-401. PubMed ID: 3748533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lens-specific mRNA in cultures of embryonic chick neural retina and pigmented epithelium.
    Thomson I; de Pomerai DI; Jackson JF; Clayton RM
    Exp Cell Res; 1979 Aug; 122(1):73-81. PubMed ID: 477759
    [No Abstract]   [Full Text] [Related]  

  • 54. An analysis of pigment cell development in the periodic albino mutant of Xenopus.
    MacMillan GJ
    J Embryol Exp Morphol; 1979 Aug; 52():165-70. PubMed ID: 521748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in crystallin expression during transdifferentiation and subsequent ageing of embryonic chick neural retina in vitro: comparison with lens epithelium.
    Patek CE; Jeanny JC; Clayton RM
    Exp Eye Res; 1993 Nov; 57(5):527-37. PubMed ID: 8282039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein profiles of microsections of the fetal and adult human lens during development and ageing.
    Bours J; Wegener A; Hofmann D; Födisch HJ; Hockwin O
    Mech Ageing Dev; 1990 May; 54(1):13-27. PubMed ID: 2195251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rat lens gamma-crystallins. Characterization of the six gene products and their spatial and temporal distribution resulting from differential synthesis.
    Siezen RJ; Wu E; Kaplan ED; Thomson JA; Benedek GB
    J Mol Biol; 1988 Feb; 199(3):475-90. PubMed ID: 3351938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Periodic albinism of a widely used albino mutant of Xenopus laevis caused by deletion of two exons in the Hermansky-Pudlak syndrome type 4 gene.
    Fukuzawa T
    Genes Cells; 2021 Jan; 26(1):31-39. PubMed ID: 33147376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related changes of water-soluble proteins of human eye lens during the prenatal period.
    Trifonova NL; Alexiev C; Stamenova M; Goranov M
    Ophthalmic Res; 1993; 25(3):162-71. PubMed ID: 8336902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IGF-1 enhancement of FGF-induced lens fiber differentiation in rats of different ages.
    Richardson NA; Chamberlain CG; McAvoy JW
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3303-12. PubMed ID: 8225865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.