These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4782426)

  • 1. [Dependence of the production of organic substances liberated by Chlorella pyrenoidosa cells on the photosynthesis process].
    Maksimova IV; Kuznetsova ACh
    Mikrobiologiia; 1973; 42(6):969-75. PubMed ID: 4782426
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of CO2 on the liberation of organic substances in the dark by Chlorella pyrenoidosa].
    Maksimova IV
    Mikrobiologiia; 1974; 43(1):34-8. PubMed ID: 4407449
    [No Abstract]   [Full Text] [Related]  

  • 3. Separation of photosynthetic systems I and II from a chloroplast preparation from Chlorella.
    Grimme LH; Boardman NK
    Hoppe Seylers Z Physiol Chem; 1973; 354(10-11):1499-502. PubMed ID: 4803842
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of plastoquinone in the in vivo photosynthetic cyclic electron transport pathway in algae.
    Biggins J
    FEBS Lett; 1974 Jan; 38(3):311-4. PubMed ID: 4855064
    [No Abstract]   [Full Text] [Related]  

  • 5. [Changes in the concentration of extracellular products and their composition in a synchronous culture of Chlorella pyrenoidosa in the presence of light and an elevated 02 concentration].
    Maksimova IV; Gorskaia NV; Dal' ES
    Mikrobiologiia; 1976; 45(1):54-9. PubMed ID: 940499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorella mutants resistant to photophosphorylation inhibitor 3(3,4)-dichlorophenyl-1,1-dimethylurea (DCMU). I. Origin of mutants.
    Mukhamadiev BT; Zalenskii OV; Kvitko KV
    Sov Genet; 1971 Apr; 7(4):443-5. PubMed ID: 5163384
    [No Abstract]   [Full Text] [Related]  

  • 7. [Kinetics of triphosphoglyceric acid formation in Chlorella pyrenoidosa (in vivo) during alternation of light and darkness].
    Rusev R; Donev S; Bonev M; Sivriev I
    Biofizika; 1980; 25(3):446-50. PubMed ID: 7397261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of luminescence in the 10-6-10-4-s range in Chlorella.
    Lavorel J
    Biochim Biophys Acta; 1973 Nov; 325(2):213-29. PubMed ID: 4761981
    [No Abstract]   [Full Text] [Related]  

  • 9. Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata.
    Tsuji N; Hirooka T; Nagase H; Hirata K; Miyamoto K
    Biotechnol Lett; 2003 Feb; 25(3):241-4. PubMed ID: 12882578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and organization of system II photosynthetic units during the greening of a dark-grown Chlorella mutant.
    Dubertret G; Joliot P
    Biochim Biophys Acta; 1974 Sep; 357(3):399-411. PubMed ID: 4415914
    [No Abstract]   [Full Text] [Related]  

  • 11. Dichlorophenylurea-resistant oxygen evolution in Chlorella after cerulenin treatment.
    Lehoczki E; Herczeg T; Szalay L
    Biochim Biophys Acta; 1979 Feb; 545(2):376-80. PubMed ID: 760783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prompt effect of pyridazinone herbicides on the primary processes of photosynthesis.
    Herczeg T; Lehoczki E; Szalay L
    FEBS Lett; 1979 Dec; 108(1):226-8. PubMed ID: 520549
    [No Abstract]   [Full Text] [Related]  

  • 13. Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion.
    Wang H; Fan X; Zhang Y; Yang D; Guo R
    Biotechnol Lett; 2011 Jul; 33(7):1345-50. PubMed ID: 21400238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis.
    Song W; Rashid N; Choi W; Lee K
    Bioresour Technol; 2011 Sep; 102(18):8676-81. PubMed ID: 21398113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Japanese Paramecium bursaria extract on photosynthetic carbon fixation of symbiotic algae.
    Kamako S; Imamura N
    J Eukaryot Microbiol; 2006; 53(2):136-41. PubMed ID: 16579816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Production of glycolic acid by the cells of Chlorella pyrenoidosa].
    Maksimova IV; Dal' ES
    Mikrobiologiia; 1975; 44(6):1057-63. PubMed ID: 2841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of nitrogen, manganese, and sulfur deprivation on photo-hydrogen evolution and growth of Chlorella pyrenoidosa].
    Zhang L; Sang M; Li A; Zhang C
    Sheng Wu Gong Cheng Xue Bao; 2010 Apr; 26(4):489-94. PubMed ID: 20575437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorella mutants resistant to the photophosphorylation inhibitor 3(3, 4)- dichlorophenyl-1, 1-dimethylurea (DCMU). II. Mutagenic effect of DCMU on different strains.
    Mukhamadiev BT; Kvitko KV; Zalenskii OV
    Sov Genet; 1971 May; 7(5):580-4. PubMed ID: 5163350
    [No Abstract]   [Full Text] [Related]  

  • 19. Triggered-luminescence in dark adapted Chlorella cells and chloroplasts.
    Etienne AL; Lavorel J
    FEBS Lett; 1975 Oct; 57(3):276-9. PubMed ID: 1181201
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of pyridazinone herbicides on the photosynthetic electron transport chain of chloroplasts and Chlorella].
    Karapetian NV; Rakhimberdieva MG; Lekhotski E; KrasnovskiÄ­ AA
    Biokhimiia; 1981 Nov; 46(11):2082-8. PubMed ID: 7317532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.