These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4786580)

  • 21. Energy dependence of thermoluminescent dosemeters for x-ray dose and dose distribution measurements in a mouse phantom.
    Puite KJ; Crebolder DL
    Phys Med Biol; 1974 May; 19(3):341-7. PubMed ID: 4445212
    [No Abstract]   [Full Text] [Related]  

  • 22. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosimetric properties of KMgF
    Ramírez-Romero MI; García-Salinas L; Villicaña-Méndez M; Huirache-Acuña R; Apolinar-Cortés J; González PR
    Appl Radiat Isot; 2018 Nov; 141():203-205. PubMed ID: 29705671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Itercomparison between photographic, thermoluminescent and radiophotoluminescent dosimeters.
    Deus SF; Watanabe S
    Health Phys; 1975 Jun; 28(6):793-9. PubMed ID: 1140982
    [No Abstract]   [Full Text] [Related]  

  • 25. The high dose response and functional capability of the DT-702/Pd lithium fluoride thermoluminescent dosimeter.
    Lawlor TM; Talmadge MD; Murray MM; Nelson ME; Mueller AC; Romanyukha AA; Fairchild GR; Grypp MD; Williams AS
    Health Phys; 2015 May; 108(5):514-9. PubMed ID: 25811149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of x-ray beams using thermoluminescent dosemeters.
    Spurny Z; Milu C; Racoveanu N
    Phys Med Biol; 1973 Mar; 18(2):276-8. PubMed ID: 4805118
    [No Abstract]   [Full Text] [Related]  

  • 27. Use of sintered magnesium borate thermoluminescent dosimeters for low dose measurements.
    Ogunleye OT; Richmond RG; Cash BL
    Health Phys; 1985 Sep; 49(3):527-32. PubMed ID: 4030343
    [No Abstract]   [Full Text] [Related]  

  • 28. The suitability of different preparations of thermoluminescent lithium borate for medical dosimetry.
    Wall BF; Driscoll CM; Strong JC; Fisher ES
    Phys Med Biol; 1982 Aug; 27(8):1023-34. PubMed ID: 7122698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy and angle dependence of calcium fluoride and lithium fluoride thermoluminescent dosimetry systems.
    Gibbs SJ; Mitchell AC
    Oral Surg Oral Med Oral Pathol; 1974 Apr; 37(4):641-8. PubMed ID: 4521954
    [No Abstract]   [Full Text] [Related]  

  • 30. Internal background build-up measurements in CaF2: Mn thermoluminescent dosimeters.
    Balasubrahmanyam V; Measures MP
    Health Phys; 1977 Apr; 32(4):317-8. PubMed ID: 881326
    [No Abstract]   [Full Text] [Related]  

  • 31. The light conversion efficiency of TLD-700 for alpha particles relative to cobalt-60 gamma radiation.
    Bartlett DT; Edwards AA
    Phys Med Biol; 1979 Nov; 24(6):1276-83. PubMed ID: 531101
    [No Abstract]   [Full Text] [Related]  

  • 32. Thermoluminescence response of CaSO4:Dy and Li2B4O7:Mn to polonium-210 alpha radiation.
    Lakshmanan AR; Ayyangar K
    Health Phys; 1976 Sep; 31(3):284-5. PubMed ID: 977351
    [No Abstract]   [Full Text] [Related]  

  • 33. New sintered thermoluminescent dosimeters for personnel and environmental dosimetry.
    Prokic MS
    Health Phys; 1982 Jun; 42(6):849-55. PubMed ID: 7107292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IAEA/WHO 60Co teletherapy dosimetry service using mailed LiF dosimeters. A survey of results obtained during 1975-1982.
    Boyd AW; Eisenlohr HH
    Med Phys; 1983; 10(4):491-2. PubMed ID: 6888365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LiF and CaF2:Mn thermoluminescent dosimeters in tandem.
    Gorbics SG; Attix FH
    Int J Appl Radiat Isot; 1968 Feb; 19(2):81-9. PubMed ID: 5639088
    [No Abstract]   [Full Text] [Related]  

  • 36. [The use of thermoluminescent dosimeters for measuring low-energy x-ray and gamma radiation].
    Bronshteĭn IE; Fominykh VI; Lebedev OV; Kononova RF; Alekseeva VA; Fedina SA; Villeval'de ND
    Gig Sanit; 1991 Nov; (11):50-3. PubMed ID: 1809640
    [No Abstract]   [Full Text] [Related]  

  • 37. CaSO4:Dy and LiF:Mg, Cu, P thermoluminescent dosimeters for environmental monitoring in ambient areas of a nuclear power plant.
    Zeng XS; Zeng JX; Tan GX; Mai WJ
    Health Phys; 1996 Mar; 70(3):367-71. PubMed ID: 8609029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Beta radiation dosimetry with thermoluminescent lithium fluoride].
    Koz'min GV; Spirin EV; Tkachenko VV
    Radiobiologiia; 1978; 18(5):785-9. PubMed ID: 715213
    [No Abstract]   [Full Text] [Related]  

  • 39. Optically stimulated luminescence of some thermoluminescent detectors as an indicator of absorbed radiation dose.
    Jack I; Kerikmäe M; Lust A
    Radiat Prot Dosimetry; 2002; 100(1-4):459-62. PubMed ID: 12382921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The re-estimation of absorbed doses of less than 1 rad measured with lithium fluoride thermoluminescent dosemeters.
    Mason EW; McKinlay AF; Saunders D
    Phys Med Biol; 1977 Jan; 22(1):29-35. PubMed ID: 840895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.