These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 478727)

  • 1. The influence of preceeding and contralateral training on the inactivity atrophy of the skeletal muscular system.
    Christ G; Hildebrandt G; Kriebel R; Rohrbach H
    Int J Rehabil Res; 1979; 2(1):80-1. PubMed ID: 478727
    [No Abstract]   [Full Text] [Related]  

  • 2. Regrowth of skeletal muscle atrophied from inactivity.
    Machida S; Booth FW
    Med Sci Sports Exerc; 2004 Jan; 36(1):52-9. PubMed ID: 14707768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular physiology of human limb immobilization and rehabilitation.
    Greenhaff PL
    Exerc Sport Sci Rev; 2006 Oct; 34(4):159-63. PubMed ID: 17031253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.
    Jones SW; Hill RJ; Krasney PA; O'Conner B; Peirce N; Greenhaff PL
    FASEB J; 2004 Jun; 18(9):1025-7. PubMed ID: 15084522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rehabilitation of muscle function after sport injury - major problem in sports medicine.
    Eriksson E
    Int J Sports Med; 1981 Feb; 2(1):1-6. PubMed ID: 7333730
    [No Abstract]   [Full Text] [Related]  

  • 6. Relative contributions of muscle activation and muscle size to plantarflexor torque during rehabilitation after immobilization.
    Stevens JE; Pathare NC; Tillman SM; Scarborough MT; Gibbs CP; Shah P; Jayaraman A; Walter GA; Vandenborne K
    J Orthop Res; 2006 Aug; 24(8):1729-36. PubMed ID: 16779833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical observations of juvenile nonprogressive muscular atrophy localized in hand and forearm.
    Hashimoto O; Asada M; Ohta M; Kuroiwa Y
    J Neurol; 1976 Jan; 211(2):105-10. PubMed ID: 55466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Muscle training by electrostimulation].
    Magyarosy I; Schnizer W
    Fortschr Med; 1990 Mar; 108(7):121-4. PubMed ID: 2182488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip, thigh and calf muscle atrophy and bone loss after 5-week bedrest inactivity.
    Berg HE; Eiken O; Miklavcic L; Mekjavic IB
    Eur J Appl Physiol; 2007 Feb; 99(3):283-9. PubMed ID: 17186305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of performance on gene expression in skeletal muscle: effects of forced inactivity.
    Thomason DB; Booth FW
    Adv Myochem; 1989; 2():79-82. PubMed ID: 11540914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of inducible nitric oxide synthase attenuates immobilization-induced skeletal muscle atrophy in mice.
    Bae SK; Cha HN; Ju TJ; Kim YW; Kim HS; Kim YD; Dan JM; Kim JY; Kim SD; Park SY
    J Appl Physiol (1985); 2012 Jul; 113(1):114-23. PubMed ID: 22518831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of voluntary muscle strength after 3 weeks of cast immobilization is suppressed in women compared with men.
    Clark BC; Manini TM; Hoffman RL; Russ DW
    Arch Phys Med Rehabil; 2009 Jan; 90(1):178-80. PubMed ID: 19154845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetanus toxin preserves skeletal muscle contractile force and size during limb immobilization.
    Matthews CC; Lovering RM; Bowen TG; Fishman PS
    Muscle Nerve; 2014 Nov; 50(5):759-66. PubMed ID: 24590678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients.
    Fujak A; Kopschina C; Forst R; Mueller LA; Forst J
    Disabil Rehabil Assist Technol; 2011; 6(4):305-11. PubMed ID: 20939690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of resistance ladder training on sparc expression in skeletal muscle of hindlimb immobilized rats.
    Son JS; Kim JH; Kim HJ; Yoon DH; Kim JS; Song HS; Song W
    Muscle Nerve; 2016 Jun; 53(6):951-7. PubMed ID: 26467437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of immobilization and rehabilitation on the skeletal muscle of trained and sedentary rats.
    Oliveira Milani JG; Matheus JP; Gomide LB; Volpon JB; Shimano AC
    Ann Biomed Eng; 2008 Oct; 36(10):1641-8. PubMed ID: 18683054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of inactivity, programmed stimulation, and denervation on the histochemistry of skeletal muscle fiber types.
    Riley DA; Allin EF
    Exp Neurol; 1973 Aug; 40(2):391-413. PubMed ID: 4354185
    [No Abstract]   [Full Text] [Related]  

  • 18. Training at non-damaging intensities facilitates recovery from muscle atrophy.
    Itoh Y; Murakami T; Mori T; Agata N; Kimura N; Inoue-Miyazu M; Hayakawa K; Hirano T; Sokabe M; Kawakami K
    Muscle Nerve; 2017 Feb; 55(2):243-253. PubMed ID: 27301985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury.
    Erickson ML; Ryan TE; Backus D; McCully KK
    Muscle Nerve; 2017 May; 55(5):669-675. PubMed ID: 27576602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber atrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization.
    Ibebunjo C; Martyn JA
    Crit Care Med; 1999 Feb; 27(2):275-85. PubMed ID: 10075050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.