These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4787640)

  • 1. Autoradiographic studies concerning the supraspinal site of the antinociceptive action of morphine when inhibiting the hindleg flexor reflex in rabbits.
    Teschemacher H; Schubert P; Herz A
    Neuropharmacology; 1973 Feb; 12(2):123-31. PubMed ID: 4787640
    [No Abstract]   [Full Text] [Related]  

  • 2. Differentiation between spinal and supraspinal sites of action of morphine when inhibiting the hindleg flexor reflex in rabbits.
    Vigouret J; Teschemacher H; Albus K; Herz A
    Neuropharmacology; 1973 Feb; 12(2):111-21. PubMed ID: 4787639
    [No Abstract]   [Full Text] [Related]  

  • 3. On the central sites for the antinociceptive action of morphine and fentanyl.
    Herz A; Albus K; Metys J; Schubert P; Teschemacher H
    Neuropharmacology; 1970 Nov; 9(6):539-51. PubMed ID: 5537123
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of tolerance to the antinociceptive effect of morphine after intraventricular injection.
    Herz A; Teschemacher H
    Experientia; 1973 May; 29(1):64-5. PubMed ID: 4729456
    [No Abstract]   [Full Text] [Related]  

  • 5. Antinociceptive synergism between supraspinal and spinal sites after subcutaneous morphine evidenced by CNS morphine content.
    Miyamoto Y; Morita N; Kitabata Y; Yamanishi T; Kishioka S; Ozaki M; Yamamoto H
    Brain Res; 1991 Jun; 552(1):136-40. PubMed ID: 1913173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central release of acetylcholine following administration of morphine to unanesthetized rabbits.
    Mullin WJ
    Can J Physiol Pharmacol; 1974 Jun; 52(3):369-74. PubMed ID: 4850932
    [No Abstract]   [Full Text] [Related]  

  • 7. Morphine hyperglycaemia.
    Feldberg W; Gupta KP
    J Physiol; 1974 May; 238(3):487-502. PubMed ID: 4853259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine.
    Yeung JC; Rudy TA
    J Pharmacol Exp Ther; 1980 Dec; 215(3):633-42. PubMed ID: 6893721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of behavioural and EEG activation induced by morphine acting on lower brain-stem structures.
    Albus K; Herz A
    Electroencephalogr Clin Neurophysiol; 1972 Dec; 33(6):579-90. PubMed ID: 4117335
    [No Abstract]   [Full Text] [Related]  

  • 10. Tolerance to morphine analgesia: decreased multiplicative interaction between spinal and supraspinal sites.
    Roerig SC; O'Brien SM; Fujimoto JM; Wilcox GL
    Brain Res; 1984 Aug; 308(2):360-3. PubMed ID: 6548169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions to ascending noradrenergic and serotonergic pathways modify antinociception produced by intracerebroventricular administration of morphine.
    Sawynok J; Reid A
    Neuropharmacology; 1989 Feb; 28(2):141-7. PubMed ID: 2497401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of ( 14 C) amphetamine in mouse brain: an autoradiographic study.
    Placidi GF; Masuoka DT; Earle RW
    Brain Res; 1972 Mar; 38(2):399-405. PubMed ID: 5028535
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of the tail flick reflex following microinjection of morphine into the amygdala.
    Helmstetter FJ; Bellgowan PS; Tershner SA
    Neuroreport; 1993 May; 4(5):471-4. PubMed ID: 8513121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supraspinal NMDA and non-NMDA receptors are differentially involved in the production of antinociception by morphine and beta-endorphin administered intracerebroventricularly in the formalin pain model.
    Chung KM; Song DK; Huh SO; Kim YH; Choi MR; Suh HW
    Neuropeptides; 2000; 34(3-4):158-66. PubMed ID: 11021975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide on tolerance to morphine and alcohol in mice.
    Szabó G; Mácsai M; Schek E; Telegdy G
    Ann N Y Acad Sci; 1998 Dec; 865():566-9. PubMed ID: 9928071
    [No Abstract]   [Full Text] [Related]  

  • 16. Dependence and withdrawal following intracerebroventricular and systemic morphine administration: functional anatomy and behavior.
    Adams RE; Wooten GF
    Brain Res; 1990 Jun; 518(1-2):6-10. PubMed ID: 2390728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antinociceptive activity of morphine after injection of biogenic amines in the cerebral ventricles of the conscious rat.
    Sparkes CG; Spencer PS
    Br J Pharmacol; 1971 Jun; 42(2):230-41. PubMed ID: 5091158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of analgesic doses of morphine on regional cerebral glucose metabolism in pain-related structures.
    Levy RM; Fields HL; Stryker MP; Heinricher MM
    Brain Res; 1986 Mar; 368(1):170-3. PubMed ID: 3955357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings: On localization of the central hyperglycaemic effect of morphine.
    Dey PK; Feldberg W; Wendlandt S
    J Physiol; 1974 Jul; 240(2):30P-31P. PubMed ID: 4479410
    [No Abstract]   [Full Text] [Related]  

  • 20. Morphine hyperglycaemia: the site of action.
    Feldberg W; Gupta KP
    J Physiol; 1972 Jul; 224(2):85P-86P. PubMed ID: 4677774
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.