These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4788309)

  • 1. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite relationships by means of inhibition patterns.
    Ray WJ; Mildvan AS; Long JW
    Biochemistry; 1973 Sep; 12(19):3724-32. PubMed ID: 4788309
    [No Abstract]   [Full Text] [Related]  

  • 2. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite distance by means of nuclear magnetic resonance measurements.
    Ray WJ; Mildvan AS
    Biochemistry; 1973 Sep; 12(19):3733-43. PubMed ID: 4788310
    [No Abstract]   [Full Text] [Related]  

  • 3. The interaction of phosphoglucomutase with nucleotide inhibitors.
    Duckworth HW; Barber BH; Sanwal BD
    J Biol Chem; 1973 Feb; 248(4):1431-5. PubMed ID: 4568817
    [No Abstract]   [Full Text] [Related]  

  • 4. Magnetic resonance and kinetic studies of the mechanism of sodium and potassium ion-activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Biol Chem; 1974 May; 249(10):3187-97. PubMed ID: 4364418
    [No Abstract]   [Full Text] [Related]  

  • 5. Yeast inorganic pyrophosphatase. II. Magnetic resonance and steady-state kinetic studies of metal ion and pyrophosphate analog binding.
    Coopermann BS; Chiu NY
    Biochemistry; 1973 Apr; 12(9):1670-6. PubMed ID: 4354603
    [No Abstract]   [Full Text] [Related]  

  • 6. Yeast inorganic pyrophosphatase. VI. Studies on specificity and mechanism.
    Sperow JW; Moe OA; Ridlington JW; Butler LG
    J Biol Chem; 1973 Mar; 248(6):2062-5. PubMed ID: 4347859
    [No Abstract]   [Full Text] [Related]  

  • 7. Electron paramagnetic resonance studies of manganese (II) coordination in the phosphoglucomutase system.
    Reed GH; Ray WJ
    Biochemistry; 1971 Aug; 10(17):3190-7. PubMed ID: 4330325
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorus nuclear magnetic resonance studies of phosphoglucomutase and its metal ion complexes.
    Ray WJ; Mildvan AS; Grutzner JB
    Arch Biochem Biophys; 1977 Dec; 184(2):453-63. PubMed ID: 23074
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetics of the rabbit muscle enolase-catalyzed dehydration of 2-phosphoglycerate. Fluoride and phosphate inhibition.
    Wang T; Himoe A
    J Biol Chem; 1974 Jun; 249(12):3895-902. PubMed ID: 4857983
    [No Abstract]   [Full Text] [Related]  

  • 10. Nuclear magnetic resonance studies of selectively hindered internal motion of substrate analogs at the active site of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2813-8. PubMed ID: 4625313
    [No Abstract]   [Full Text] [Related]  

  • 11. On the inhibitory power of some further pyrazole derivatives of horse liver alcohol dehydrogenase.
    Dahlbom R; Tolf BR; Akeson A; Lundquist G; Theorell H
    Biochem Biophys Res Commun; 1974 Apr; 57(3):549-53. PubMed ID: 4827822
    [No Abstract]   [Full Text] [Related]  

  • 12. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process.
    Post CB; Ray WJ; Gorenstein DG
    Biochemistry; 1989 Jan; 28(2):548-58. PubMed ID: 2523728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of (Na + ,K + )-ATPase of human erythrocyte membranes. II. Inhibition by ouabain.
    Wolf HU; Peter HW
    Biochim Biophys Acta; 1972 Dec; 290(1):310-20. PubMed ID: 4264470
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxygen-18 studies to determine the position of bond cleavage of acetyl phosphate in the presence of divalent metal ions.
    Klinman JP; Samuel D
    Biochemistry; 1971 May; 10(11):2126-31. PubMed ID: 4327401
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on crystalline yeast phosphoglucomutase: the presence of intrinsic zinc.
    Hirose M; Sugimoto E; Chiba H
    Biochim Biophys Acta; 1972 Nov; 289(1):137-46. PubMed ID: 4628805
    [No Abstract]   [Full Text] [Related]  

  • 16. Nuclear relaxation and kinetic studies of the role of Mn 2+ in the mechanism of enolase.
    Nowak T; Mildvan AS; Kenyon GL
    Biochemistry; 1973 Apr; 12(9):1690-701. PubMed ID: 4572991
    [No Abstract]   [Full Text] [Related]  

  • 17. Nuclear magnetic resonance studies of the function of potassium in the mechanism of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2819-28. PubMed ID: 5064959
    [No Abstract]   [Full Text] [Related]  

  • 18. Tracer study on intermediates in some metal-catalyzed hydrocarbon reactions.
    Guczi L; Tétényi P
    Ann N Y Acad Sci; 1973 Nov; 213():173-205. PubMed ID: 4520059
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of rate constants for (PO3-) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1989 Jan; 28(2):559-69. PubMed ID: 2523729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation in dilute solutions of Mn 2+ and inorganic pyrophosphate and its biochemical consequences.
    Cooperman BS; Mark DH
    Biochim Biophys Acta; 1971 Nov; 252(2):221-34. PubMed ID: 4332297
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.