These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 479107)

  • 1. Transport of C5 dicarboxylate compounds by Pseudomonas putida.
    Edwards WV; Sando JJ; Hartline RA
    J Bacteriol; 1979 Sep; 139(3):748-54. PubMed ID: 479107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
    Agbanyo F; Taylor NF
    Biochem J; 1985 May; 228(1):257-62. PubMed ID: 4004814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport.
    Chen Z; Putt DA; Lash LH
    Arch Biochem Biophys; 2000 Jan; 373(1):193-202. PubMed ID: 10620338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basolateral transport of glutarate in proximal S2 segments of rabbit kidney: kinetics of the uptake process and effect of activators of protein kinase A and C.
    Röver N; Krämer C; Stärk U; Gabriëls G; Greven J
    Pflugers Arch; 1998 Aug; 436(3):423-8. PubMed ID: 9644225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles.
    Zimmerli B; O'Neill B; Meier PJ
    Pflugers Arch; 1992 Jul; 421(4):329-35. PubMed ID: 1408656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-malate transport and proton symport in vesicles prepared from Pseudomonas putida.
    Agbanyo FR; Moses G; Taylor NF
    Biochem Cell Biol; 1986 Nov; 64(11):1190-4. PubMed ID: 3030368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles.
    Schmitt C; Burckhardt G
    Pflugers Arch; 1993 May; 423(3-4):280-90. PubMed ID: 8321632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of dihydrostreptomycin uptake in Pseudomonas putida membrane vesicles: absence of inhibition by cations.
    Thomson TB; Crider BP; Eagon RG
    J Antimicrob Chemother; 1985 Aug; 16(2):157-63. PubMed ID: 2415504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney.
    Sheridan E; Rumrich G; Ullrich KJ
    Pflugers Arch; 1983 Sep; 399(1):18-28. PubMed ID: 6646996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and plasmid RP4-containing Pseudomonas putida.
    Hedstrom RC; Crider BP; Eagon RG
    J Bacteriol; 1982 Oct; 152(1):255-9. PubMed ID: 7118827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism mediating basolateral transport of 2,4-dichlorophenoxyacetic acid in rat kidney.
    Villalobos AR; Dunnick CA; Pritchard JB
    J Pharmacol Exp Ther; 1996 Aug; 278(2):582-9. PubMed ID: 8768707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport of oxalate by Pseudomonas oxalaticus OX1.
    Dijkhuizen L; Groen L; Harder W; Konings WN
    Arch Microbiol; 1977 Nov; 115(2):223-7. PubMed ID: 202212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Glutarate Catabolism by GntR Family Regulator CsiR and LysR Family Regulator GcdR in Pseudomonas putida KT2440.
    Zhang M; Kang Z; Guo X; Guo S; Xiao D; Liu Y; Ma C; Gao C; Xu P
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-hydroxyglutarate oxidoreductase of Pseudomonas putida.
    Reitz MS; Rodwell VW
    J Bacteriol; 1969 Nov; 100(2):708-14. PubMed ID: 5354943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes and possible structure of the oxoglutarate translocator of rat-heart mitochondria revealed by the kinetic study of malate and oxoglutarate uptake.
    Sluse-Goffart CM; Sluse FE; Duyckaerts C; Richard M; Hengesch P; Liébecq C
    Eur J Biochem; 1983 Aug; 134(3):397-406. PubMed ID: 6884340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Ketoglutarate transport in rat renal brush-border and basolateral membrane vesicles.
    Edwards RM; Stack E; Trizna W
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1059-64. PubMed ID: 9190836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-glucose and D-gluconate transport in vesicles from Pseudomonas putida.
    Al-Jobore A; Moses G; Taylor NF
    Can J Biochem; 1980 Dec; 58(12):1397-404. PubMed ID: 7248836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles.
    Pritchard JB
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F597-604. PubMed ID: 3177651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium
    Guo X; Zhang M; Cao M; Zhang W; Kang Z; Xu P; Ma C; Gao C
    J Biol Chem; 2018 Oct; 293(40):15513-15523. PubMed ID: 30131334
    [No Abstract]   [Full Text] [Related]  

  • 20. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate.
    Zhang M; Gao C; Guo X; Guo S; Kang Z; Xiao D; Yan J; Tao F; Zhang W; Dong W; Liu P; Yang C; Ma C; Xu P
    Nat Commun; 2018 May; 9(1):2114. PubMed ID: 29844506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.