These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 479181)
1. Proton NMR study of methemoglobin and its isolated chains. Effect of the subunit association on the structure of the subunits. Neya S; Morishima I J Biol Chem; 1979 Sep; 254(18):9107-12. PubMed ID: 479181 [TBL] [Abstract][Full Text] [Related]
2. Proton magnetic resonance study of p-mercuribenzoate binding and structural changes in methemoglobin. Neya S; Morishima I Biochemistry; 1980 Jan; 19(2):258-65. PubMed ID: 7352984 [TBL] [Abstract][Full Text] [Related]
3. High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin, and horseradish peroxidase. Morishima I; Ogawa S; Yamada H Biochemistry; 1980 Apr; 19(8):1569-75. PubMed ID: 7378366 [TBL] [Abstract][Full Text] [Related]
4. Nuclear magnetic resonance studies of hemoprotein. Proton hyperfine shifts and structural characterization of the different heme environments in methemoglobin and metmyoglobin. Morishima I; Neya S; Inubushi T; Yonezawa T; Iizuka T Biochim Biophys Acta; 1978 Jun; 534(2):307-16. PubMed ID: 667106 [TBL] [Abstract][Full Text] [Related]
5. Nuclear magnetic resonance studies of high-spin ferric hemoproteins. Morishmima I; Ogawa S; Inubushi T; Iizuka T Adv Biophys; 1978; 11():217-45. PubMed ID: 27954 [TBL] [Abstract][Full Text] [Related]
6. Conformation and spin state in methemoglobin. Hensley P; Edelstein SJ; Wharton DC; Gibson QH J Biol Chem; 1975 Feb; 250(3):952-60. PubMed ID: 234444 [TBL] [Abstract][Full Text] [Related]
7. Interaction of methemoglobin with inositol hexaphosphate. Presence of the T state in human adult methemoglobin in the low spin state. Neya S; Morishima I J Biol Chem; 1981 Jan; 256(2):793-8. PubMed ID: 7451474 [TBL] [Abstract][Full Text] [Related]
8. 1H-NMR heme resonance assignments by selective deuteration in low-spin complexes of ferric hemoglobin A. La Mar GN; Jue T; Nagai K; Smith KM; Yamamoto Y; Kauten RJ; Thanabal V; Langry KC; Pandey RK; Leung HK Biochim Biophys Acta; 1988 Jan; 952(2):131-41. PubMed ID: 3337821 [TBL] [Abstract][Full Text] [Related]
9. Proton nuclear magnetic resonance investigation of the spin-state equilibrium of the alpha and beta subunits in intact azidomethemoglobin. Neya S; Funasaki N Biochemistry; 1986 Mar; 25(6):1221-6. PubMed ID: 3964673 [TBL] [Abstract][Full Text] [Related]
10. Proton NMR investigation of the influence of subunit assembly on the low-spin in equilibrium high-spin equilibrium of met-azido hemoglobin A. Yamamoto Y; La Mar GN Biochim Biophys Acta; 1989 Jul; 996(3):187-94. PubMed ID: 2546603 [TBL] [Abstract][Full Text] [Related]
11. Magnetic circular dichroism and spin equilibrium of methemoglobin and its subunits. Mawatari K; Matsukawa S; Yoneyama Y Biochem Biophys Res Commun; 1983 Jul; 114(1):318-24. PubMed ID: 6882428 [TBL] [Abstract][Full Text] [Related]
12. Different effects of subunit association upon absorption and circular dichroism spectra of methemoglobin. Mawatari K; Matsukawa S; Yoneyama Y Biochim Biophys Acta; 1983 Jun; 745(3):219-28. PubMed ID: 6860673 [TBL] [Abstract][Full Text] [Related]
13. 1H-NMR studies of ferric soybean leghemoglobin: assignment of hyperfine shifted resonances of complexes with cyanide, nicotinate, pyridine and azide. Trewhella J; Wright PE Biochim Biophys Acta; 1980 Oct; 625(2):202-20. PubMed ID: 7192162 [TBL] [Abstract][Full Text] [Related]
14. Use of heme spin-labeling to probe heme environments of alpha and beta chains of hemoglobin. Lau PW; Asakura T J Biol Chem; 1979 Apr; 254(8):2595-9. PubMed ID: 218946 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic studies of protein-heme interactions accompanying the allosteric transition in methemoglobins. Henry ER; Rousseau DL; Hopfield JJ; Noble RW; Simon SR Biochemistry; 1985 Oct; 24(21):5907-18. PubMed ID: 4084499 [TBL] [Abstract][Full Text] [Related]
16. Differences in iron-fluoride bonding between the isolated subunits of human methemoglobin fluoride and sperm whale metmyoglobin fluoride as measured by resonance Raman spectroscopy. Asher SA; Schuster TM Biochemistry; 1981 Mar; 20(7):1866-73. PubMed ID: 7225362 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy. Magliozzo RS; Peisach J Biochemistry; 1993 Aug; 32(33):8446-56. PubMed ID: 8395204 [TBL] [Abstract][Full Text] [Related]
18. Spectral studies of iron coordination in hemeprotein complexes: difference spectroscopy below 250 millimicrons. Brill AS; Sandberg HE Biophys J; 1968 Jun; 8(6):669-90. PubMed ID: 5699802 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the alpha 1 beta 2 contact structure of valency hybrid hemoglobins by ultraviolet difference spectra. Mawatari K; Matsukawa S; Yoneyama Y; Takeda Y Biochim Biophys Acta; 1987 Jul; 913(3):313-20. PubMed ID: 3593741 [TBL] [Abstract][Full Text] [Related]
20. Nuclear magnetic resonance studies of hemoglobins. 3. Evidence for the nonequivalence of alpha- and beta-hains in azide derivativeof methemoglobins. Davis DG; Charache S; Ho C Proc Natl Acad Sci U S A; 1969 Aug; 63(4):1403-9. PubMed ID: 5260944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]