These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 479669)
1. Micellar properties of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oyl taurine and relationship to in vitro red cell disruption. Smith CM; Williams GC; Krivit W; White JG; Hanson RF J Lab Clin Med; 1979 Oct; 94(4):624-32. PubMed ID: 479669 [TBL] [Abstract][Full Text] [Related]
2. Hepatic lesions and hemolysis following administration of 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholestan-26-oyl taurine to rats. Hanson RF; Williams GC; Hachey D; Sharp HL J Lab Clin Med; 1977 Sep; 90(3):536-48. PubMed ID: 894105 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
4. Release of phospholipids from erythrocyte membranes by taurocholate is determined by their transbilayer orientation and hydrophobic backbone. Wüstner D; Pomorski T; Herrmann A; Müller P Biochemistry; 1998 Dec; 37(48):17093-103. PubMed ID: 9836604 [TBL] [Abstract][Full Text] [Related]
5. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. Kase BF; Pedersen JI; Strandvik B; Björkhem I J Clin Invest; 1985 Dec; 76(6):2393-402. PubMed ID: 4077985 [TBL] [Abstract][Full Text] [Related]
6. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. Kase BF; Björkhem I; Hågå P; Pedersen JI J Clin Invest; 1985 Feb; 75(2):427-35. PubMed ID: 3973012 [TBL] [Abstract][Full Text] [Related]
7. Effects of anionic surfactants on hamster small intestinal membrane structure and function: relationship to surface activity. Gullikson GW; Cline WS; Lorenzsonn V; Benz L; Olsen WA; Bass P Gastroenterology; 1977 Sep; 73(3):501-11. PubMed ID: 892348 [TBL] [Abstract][Full Text] [Related]
8. Lecithin protects against plasma membrane disruption by bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1998 Aug; 78(2):131-6. PubMed ID: 9733630 [TBL] [Abstract][Full Text] [Related]
9. Effect of taurocholate on the conversion of 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholestan-26-oic acid into cholic acid. Hanson RF; Williams GC Steroids; 1978 Jun; 31(6):809-13. PubMed ID: 694969 [TBL] [Abstract][Full Text] [Related]
10. The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. Hanson RF; Isenberg JN; Williams GC; Hachey D; Szczepanik P; Klein PD; Sharp HL J Clin Invest; 1975 Sep; 56(3):577-87. PubMed ID: 1159074 [TBL] [Abstract][Full Text] [Related]
11. Lipid solubilization during bile salt-induced esophageal mucosal barrier disruption in the rabbit. Schweitzer EJ; Bass BL; Batzri S; Young PM; Huesken J; Harmon JW J Lab Clin Med; 1987 Aug; 110(2):172-9. PubMed ID: 3598346 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Benedetti A; Alvaro D; Bassotti C; Gigliozzi A; Ferretti G; La Rosa T; Di Sario A; Baiocchi L; Jezequel AM Hepatology; 1997 Jul; 26(1):9-21. PubMed ID: 9214446 [TBL] [Abstract][Full Text] [Related]
13. Solubilization of lipids from hamster bile-canalicular and contiguous membranes and from human erythrocyte membranes by conjugated bile salts. Graham JM; Northfield TC Biochem J; 1987 Mar; 242(3):825-34. PubMed ID: 3593278 [TBL] [Abstract][Full Text] [Related]
15. Premicellar taurocholate avidly binds ferrous (Fe++) iron: a potential physiologic role for bile salts in iron absorption. Sanyal AJ; Hirsch JI; Moore EW J Lab Clin Med; 1990 Jul; 116(1):76-86. PubMed ID: 2376701 [TBL] [Abstract][Full Text] [Related]
16. Membrane fluidity and bile salt damage. Lowe PJ; Coleman R Biochim Biophys Acta; 1981 Jan; 640(1):55-65. PubMed ID: 7213693 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical and biological characterization of monoketocholic acid, a novel permeability enhancer. Yang L; Zhang H; Mikov M; Tucker IG Mol Pharm; 2009; 6(2):448-56. PubMed ID: 19718798 [TBL] [Abstract][Full Text] [Related]
18. Adaptive response of the enterohepatic circulation of bile acids to extrahepatic cholestasis. Dumaswala R; Berkowitz D; Heubi JE Hepatology; 1996 Mar; 23(3):623-9. PubMed ID: 8617445 [TBL] [Abstract][Full Text] [Related]
19. Role of peroxisomes in the biosynthesis of bile acids. Björkhem I; Kase BF; Pedersen JI Scand J Clin Lab Invest Suppl; 1985; 177():23-31. PubMed ID: 3865345 [TBL] [Abstract][Full Text] [Related]
20. Monohydroxy bile salt sulfates: tauro-3 beta-hydroxy-5-cholenoate-3-sulfate induces intrahepatic cholestasis in rats. Mathis U; Karlaganis G; Preisig R Gastroenterology; 1983 Sep; 85(3):674-81. PubMed ID: 6873614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]