BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 479824)

  • 1. Anion transport in dog, cat, and human red cells. Effects of varying cell volume and Donnan ratio.
    Castranova V; Weise MJ; Hoffman JF
    J Gen Physiol; 1979 Sep; 74(3):319-34. PubMed ID: 479824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of anion transport in cat and dog red blood cells.
    Castranova V; Weise MJ; Hoffman JF
    J Membr Biol; 1979 Aug; 49(1):57-74. PubMed ID: 480338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein.
    Jennings ML; Schulz RK; Allen M
    J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
    Jennings ML
    J Gen Physiol; 1995 Jan; 105(1):21-47. PubMed ID: 7537324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion transport of the red cell under non-equilibrium conditions.
    Ormos G; Mányai S
    J Physiol; 1978 Mar; 276():501-13. PubMed ID: 25961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB; Fröhlich O
    J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate flux in high sodium cat red cells.
    Sha'afi RI; Pascoe E
    J Gen Physiol; 1972 Feb; 59(2):155-66. PubMed ID: 5058472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.
    Jones GS; Knauf PA
    J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes.
    Müller-Soyano A; Glader BE
    J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of membrane potential on the passive transport of Tl+ in human red blood cells.
    Skulskii IA; Manninen V
    Acta Physiol Scand; 1981 Mar; 111(3):343-8. PubMed ID: 7315402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells.
    Milanick MA; Gunn RB
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C247-59. PubMed ID: 6089577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier-mediated sulfate transport in human ureteral epithelial cells cultured in serum-free medium.
    Elgavish A; Wille JJ; Rahemtulla F; Debro L
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C916-26. PubMed ID: 1951676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion transport in sickle red blood cells.
    Joiner CH; Gunn RB; Fröhlich O
    Pediatr Res; 1990 Dec; 28(6):587-90. PubMed ID: 2284154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic and osmotic equilibria of human red blood cells treated with nystatin.
    Freedman JC; Hoffman JF
    J Gen Physiol; 1979 Aug; 74(2):157-85. PubMed ID: 490141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of anion transport in the human red blood cell.
    Glibowicka M; Winckler B; Araníbar N; Schuster M; Hanssum H; Rüterjans H; Passow H
    Biochim Biophys Acta; 1988 Dec; 946(2):345-58. PubMed ID: 3207750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source of transport site asymmetry in the band 3 anion exchange protein determined by NMR measurements of external Cl- affinity.
    Liu D; Kennedy SD; Knauf PA
    Biochemistry; 1996 Dec; 35(48):15228-35. PubMed ID: 8952471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.