These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 4798991)

  • 1. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney.
    Frömter E; Rumrich G; Ullrich KJ
    Pflugers Arch; 1973 Oct; 343(3):189-220. PubMed ID: 4798991
    [No Abstract]   [Full Text] [Related]  

  • 2. Proximal sodium and fluid transport.
    Windhager EE; Giebisch G
    Kidney Int; 1976 Feb; 9(2):121-33. PubMed ID: 940258
    [No Abstract]   [Full Text] [Related]  

  • 3. Further studies on ion permeation in proximal tubule of necturus kidney.
    Edelman A; Anagnostopoulos T
    Am J Physiol; 1978 Aug; 235(2):F89-95. PubMed ID: 686179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3(-)-effects on other ion permeabilities and of coupled electroneutral HCO3(-)-transport.
    Burckhardt BC; Cassola AC; Frömter E
    Pflugers Arch; 1984 May; 401(1):43-51. PubMed ID: 6089091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport across renal proximal tubule: analysis of luminal, contraluminal and paracellular transport steps.
    Frömter E
    Fortschr Zool; 1975; 23(2-3):248-60. PubMed ID: 1213645
    [No Abstract]   [Full Text] [Related]  

  • 6. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules.
    Schafer JA; Troutman SL; Andreoli TE
    J Gen Physiol; 1974 Nov; 64(5):582-607. PubMed ID: 4443793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Anatomy of the epithelium. Analysis of transport through the proximal kidney tubule].
    Ullrich KJ
    Naturwissenschaften; 1973 Jun; 60(6):290-7. PubMed ID: 4269243
    [No Abstract]   [Full Text] [Related]  

  • 8. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1976 Aug; 364(3):223-8. PubMed ID: 986634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/HCO3- cotransporter in basolateral membrane of proximal tubule.
    Kondo Y; Kudo K; Abe K; Hoshi S; Igarashi Y
    Lancet; 1991 Jun; 337(8753):1355. PubMed ID: 1674339
    [No Abstract]   [Full Text] [Related]  

  • 10. Sodium, bicarbonate, and chloride absorption by the proximal tubule.
    Rector FC
    Am J Physiol; 1983 May; 244(5):F461-71. PubMed ID: 6303131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of action of harmaline on renal solute transport.
    Samarzija I; Kinne-Saffran E; Baumann K; Frömter E
    Pflugers Arch; 1977 Mar; 368(1-2):83-8. PubMed ID: 140366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of physical and neuroendocrine factors in proximal electrolyte reabsorption.
    Knox FG; Davis BB
    Metabolism; 1974 Aug; 23(8):793-803. PubMed ID: 4212327
    [No Abstract]   [Full Text] [Related]  

  • 13. The Feldberg Lecture 1976. Solute transport across epithelia: what can we learn from micropuncture studies in kidney tubules?
    Frömter E
    J Physiol; 1979 Mar; 288():1-31. PubMed ID: 381634
    [No Abstract]   [Full Text] [Related]  

  • 14. Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis.
    Bank N; Aynedjian HS; Mutz BF
    Am J Physiol; 1986 Mar; 250(3 Pt 2):F476-82. PubMed ID: 3953825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Micropuncture study of sodium chloride and bicarbonate reabsorption in the proximal tubule of the lamprey, Lampetra fluviatilis, kidney].
    Goncharevskaia OA; Podsekaeva GV
    Zh Evol Biokhim Fiziol; 1977; 13(5):642-4. PubMed ID: 919910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings: Influence of chloride gradients on sodium reabsorption from the rat renal proximal tubule.
    Giebisch G; Green R
    J Physiol; 1974 Jun; 239(2):125P-126P. PubMed ID: 4415275
    [No Abstract]   [Full Text] [Related]  

  • 17. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions.
    Ullrich KJ; Capasso G; Rumrich G; Papavassiliou F; Klöss S
    Pflugers Arch; 1977 Apr; 368(3):245-52. PubMed ID: 141035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process.
    Alpern RJ
    J Gen Physiol; 1985 Nov; 86(5):613-36. PubMed ID: 2999293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system.
    Györy AZ; Lingard JM
    J Physiol; 1976 May; 257(2):257-74. PubMed ID: 950594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
    Green R; Giebisch G
    Am J Physiol; 1975 Nov; 229(5):1205-15. PubMed ID: 1200138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.