These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 480347)
1. Micro-video study of moving bacterial flagellar filaments. I. Passive rotation by hydrodynamic force in vitro. Hotani H J Mol Biol; 1979 Apr; 129(2):305-18. PubMed ID: 480347 [No Abstract] [Full Text] [Related]
2. Micro-video study of moving bacterial flagellar filaments. III. Cyclic transformation induced by mechanical force. Hotani H J Mol Biol; 1982 Apr; 156(4):791-806. PubMed ID: 7120394 [No Abstract] [Full Text] [Related]
3. Micro-video study of moving bacterial flagellar filaments. II. Polymorphic transition in alcohol. Hotani H Biosystems; 1980; 12(3-4):325-30. PubMed ID: 7397328 [No Abstract] [Full Text] [Related]
4. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. Khan S; Macnab RM J Mol Biol; 1980 Apr; 138(3):563-97. PubMed ID: 6774099 [No Abstract] [Full Text] [Related]
5. Cinemicrographic analysis of the movement of flagellated bacteria. I. The ratio of the propulsive velocity to the frequency of bodily rotation. Yoshida T; Shimada K; Asakura S J Mechanochem Cell Motil; 1975; 3(2):87-98. PubMed ID: 1214109 [TBL] [Abstract][Full Text] [Related]
8. Bacteria swim by rotating their flagellar filaments. Berg HC; Anderson RA Nature; 1973 Oct; 245(5425):380-2. PubMed ID: 4593496 [No Abstract] [Full Text] [Related]
9. Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. Lim S; Peskin CS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036307. PubMed ID: 22587180 [TBL] [Abstract][Full Text] [Related]
10. Cinemicrographic analysis of the movement of flagellated bacteria. II. The ratio of the propulsive velocity to the frequency of the wave propagation along flagellar tail. Shimada K; Ikkai T; Yoshida T; Asakura S J Mechanochem Cell Motil; 1976 Mar; 3(3):185-93. PubMed ID: 932565 [TBL] [Abstract][Full Text] [Related]
11. Bacterial flagella rotating in bundles: a study in helical geometry. Macnab RM Proc Natl Acad Sci U S A; 1977 Jan; 74(1):221-5. PubMed ID: 264676 [TBL] [Abstract][Full Text] [Related]
12. Micro-video study of discontinuous growth of bacterial flagellar filaments in vitro. Ishihara A; Hotani H J Mol Biol; 1980 May; 139(3):265-76. PubMed ID: 7441737 [No Abstract] [Full Text] [Related]
13. Construction of bacterial flagellar filaments, and aspects of their conversion to different helical forms. Calladine CR Symp Soc Exp Biol; 1982; 35():33-51. PubMed ID: 6764043 [TBL] [Abstract][Full Text] [Related]
15. Rapid changes in flagellar rotation induced by external electric pulses. Kami-ike N; Kudo S; Hotani H Biophys J; 1991 Dec; 60(6):1350-5. PubMed ID: 1777562 [TBL] [Abstract][Full Text] [Related]
16. Mechanics of flagellar motion with an application to a conical spiral flagellate. Keller SR J Theor Biol; 1977 Sep; 68(1):73-94. PubMed ID: 916707 [No Abstract] [Full Text] [Related]
17. Hydrodynamic analysis of non-uniform flagellar undulations. Holwill ME; Miles CA J Theor Biol; 1971 Apr; 31(1):25-42. PubMed ID: 5576775 [No Abstract] [Full Text] [Related]
18. Bacterial swimming speed and rotation rate of bundled flagella. Magariyama Y; Sugiyama S; Kudo S FEMS Microbiol Lett; 2001 May; 199(1):125-9. PubMed ID: 11356579 [TBL] [Abstract][Full Text] [Related]
19. Passive rotation of flagella on paralyzed Salmonella typhimurium (mot) mutants by external rotatory driving force. Ishihara A; Yamaguchi S; Hotani H J Bacteriol; 1981 Feb; 145(2):1082-4. PubMed ID: 7007338 [TBL] [Abstract][Full Text] [Related]
20. A macroscopic scale model of bacterial flagellar bundling. Kim M; Bird JC; Van Parys AJ; Breuer KS; Powers TR Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15481-5. PubMed ID: 14671319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]