These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 480348)

  • 1. Inhibitory effect of deoxyhemoglobin A2 on the rate of deoxyhemoglobin S polymerization.
    Waterman MR; Cottam GL; Shibata K
    J Mol Biol; 1979 Apr; 129(2):337-41. PubMed ID: 480348
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S.
    Nagel RL; Bookchin RM; Johnson J; Labie D; Wajcman H; Isaac-Sodeye WA; Honig GR; SchilirĂ² G; Crookston JH; Matsutomo K
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):670-2. PubMed ID: 284392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerization of three hemoglobin A2 variants containing Val6 and inhibition of hemoglobin S polymerization by hemoglobin A2.
    Adachi K; Pang J; Reddy LR; Bradley LE; Chen Q; Trifillis P; Schwartz E; Surrey S
    J Biol Chem; 1996 Oct; 271(40):24557-63. PubMed ID: 8798718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparing effect of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S at physiologic ligand saturations.
    Poillon WN; Kim BC; Rodgers GP; Noguchi CT; Schechter AN
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5039-43. PubMed ID: 7685112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubilization of hemoglobin S by other hemoglobins.
    Benesch RE; Edalji R; Benesch R; Kwong S
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5130-4. PubMed ID: 6159640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of haemoglobins A, F, A2 and C in polymerisation of haemoglobin S.
    Cheetham RC; Huehns ER; Rosemeyer MA
    J Mol Biol; 1979 Mar; 129(1):45-61. PubMed ID: 448738
    [No Abstract]   [Full Text] [Related]  

  • 7. A proton nuclear magnetic resonance investigation of human hemoglobin A2. Implications on the intermolecular contacts in sickle hemoglobin fibers and on the Bohr effect of human normal adult hemoglobin.
    Russu IM; Lin AK; Ferro-Dosch S; Ho C
    Biochim Biophys Acta; 1984 Mar; 785(3):123-31. PubMed ID: 6704402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of polymerization of deoxyhemoglobin S and mixtures of hemoglobin A and hemoglobin S at high hemoglobin concentrations.
    Cottam GL; Waterman MR; Thompson BC
    Arch Biochem Biophys; 1977 May; 181(1):61-5. PubMed ID: 879807
    [No Abstract]   [Full Text] [Related]  

  • 9. Dipeptides as inhibitors of the gelation of sickle hemoglobin.
    Noguchi CT; Luskey KL; Pavone V
    Mol Pharmacol; 1985 Jul; 28(1):40-4. PubMed ID: 4021996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of hemoglobins A and F in polymerization of sickle hemoglobin.
    Goldberg MA; Husson MA; Bunn HF
    J Biol Chem; 1977 May; 252(10):3414-21. PubMed ID: 16902
    [No Abstract]   [Full Text] [Related]  

  • 11. The denaturation of human oxyhaemoglobin A, A2 and S by isopropanol/buffer method.
    Naoum PC; Teixeira UA; de Abreu Machado PE; Michelin OC
    Rev Bras Pesqui Med Biol; 1978 Oct; 11(4-5):241-4. PubMed ID: 725137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sickle cell traits in Canada. Trimodal distribution of Hb S as a result of interaction with alpha-thalassaemia gene.
    Wong SC; Ali MA; Boyadjian SE
    Acta Haematol; 1981; 65(3):157-63. PubMed ID: 6165216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement for therapeutic inhibition of sickle haemoglobin gelation.
    Sunshine HR; Hofrichter J; Eaton WA
    Nature; 1978 Sep; 275(5677):238-40. PubMed ID: 692700
    [No Abstract]   [Full Text] [Related]  

  • 16. [Problems in hemoglobin research].
    Derviz GV
    Klin Med (Mosk); 1981 Mar; 59(3):11-6. PubMed ID: 6167762
    [No Abstract]   [Full Text] [Related]  

  • 17. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin A in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Ozguc M; Asakura T
    J Biol Chem; 1980 Apr; 255(7):3092-9. PubMed ID: 7358731
    [No Abstract]   [Full Text] [Related]  

  • 18. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin F in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Segal R; Asakura T
    J Biol Chem; 1980 Aug; 255(16):7595-603. PubMed ID: 6156939
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation of nuclei during delay time prior to aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Asakura T; McConnell ML
    Biochim Biophys Acta; 1979 Oct; 580(2):405-10. PubMed ID: 518907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of deoxyhemoglobin S polymerization by glyceraldehyde.
    Acharya AS; Sussman LG; Jones WM; Manning JM
    Anal Biochem; 1984 Jan; 136(1):101-9. PubMed ID: 6711801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.