These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 480370)
1. A graph theoretic approach to the development of minimal phylogenetic trees. Foulds LR; Hendy MD; Penny D J Mol Evol; 1979 Jul; 13(2):127-49. PubMed ID: 480370 [TBL] [Abstract][Full Text] [Related]
2. A general approach to proving the minimality of phylogenetic trees illustrated by an example with a set of 23 vertebrates. Foulds LR; Penny D; Hendy MD J Mol Evol; 1979 Jul; 13(2):151-66. PubMed ID: 225499 [TBL] [Abstract][Full Text] [Related]
3. The combinatorics of discrete time-trees: theory and open problems. Gavryushkin A; Whidden C; Matsen FA J Math Biol; 2018 Apr; 76(5):1101-1121. PubMed ID: 28756523 [TBL] [Abstract][Full Text] [Related]
4. A heuristic method for solving the Steiner tree problem in graphs using network centralities. Fujita M; Shimada Y; Kimura T; Ikeguchi T PLoS One; 2024; 19(6):e0303764. PubMed ID: 38843249 [TBL] [Abstract][Full Text] [Related]
5. Criteria for optimising phylogenetic trees and the problem of determining the root of a tree. Penny D J Mol Evol; 1976 Aug; 8(2):95-116. PubMed ID: 966292 [TBL] [Abstract][Full Text] [Related]
6. Techniques for the verification of minimal phylogenetic trees illustrated with ten mammalian haemoglobin sequences. Penny D; Hendy MD; Foulds LR Biochem J; 1980 Apr; 187(1):65-74. PubMed ID: 6773522 [TBL] [Abstract][Full Text] [Related]
7. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees. Baste J; Paul C; Sau I; Scornavacca C Bull Math Biol; 2017 Apr; 79(4):920-938. PubMed ID: 28247121 [TBL] [Abstract][Full Text] [Related]
8. Probability Steiner trees and maximum parsimony in phylogenetic analysis. Weng JF; Mareels I; Thomas DA J Math Biol; 2012 Jun; 64(7):1225-51. PubMed ID: 21706222 [TBL] [Abstract][Full Text] [Related]
9. Computing a smallest multilabeled phylogenetic tree from rooted triplets. Guillemot S; Jansson J; Sung WK IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1141-7. PubMed ID: 20733243 [TBL] [Abstract][Full Text] [Related]
10. An algorithm for constructing local regions in a phylogenetic network. Huber KT; Watson EE; Hendy MD Mol Phylogenet Evol; 2001 Apr; 19(1):1-8. PubMed ID: 11286486 [TBL] [Abstract][Full Text] [Related]
11. A fast algorithm for computing geodesic distances in tree space. Owen M; Provan JS IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792 [TBL] [Abstract][Full Text] [Related]
12. Estimating the reliability of evolutionary trees. Penny D; Hendy M Mol Biol Evol; 1986 Sep; 3(5):403-17. PubMed ID: 2832694 [TBL] [Abstract][Full Text] [Related]
13. Efficient reconstruction of phylogenetic networks with constrained recombination. Gusfield D; Eddhu S; Langley C Proc IEEE Comput Soc Bioinform Conf; 2003; 2():363-74. PubMed ID: 16452812 [TBL] [Abstract][Full Text] [Related]
14. The deferred path heuristic for the generalized tree alignment problem. Schwikowski B; Vingron M J Comput Biol; 1997; 4(3):415-31. PubMed ID: 9278068 [TBL] [Abstract][Full Text] [Related]
15. Folding and unfolding phylogenetic trees and networks. Huber KT; Moulton V; Steel M; Wu T J Math Biol; 2016 Dec; 73(6-7):1761-1780. PubMed ID: 27107869 [TBL] [Abstract][Full Text] [Related]
17. Encoding phylogenetic trees in terms of weighted quartets. Grünewald S; Huber KT; Moulton V; Semple C J Math Biol; 2008 Apr; 56(4):465-77. PubMed ID: 17891538 [TBL] [Abstract][Full Text] [Related]
18. Quarnet Inference Rules for Level-1 Networks. Huber KT; Moulton V; Semple C; Wu T Bull Math Biol; 2018 Aug; 80(8):2137-2153. PubMed ID: 29869043 [TBL] [Abstract][Full Text] [Related]
19. A measure of the denseness of a phylogenetic network. Holmquist R J Mol Evol; 1978 Aug; 11(3):225-31. PubMed ID: 691073 [TBL] [Abstract][Full Text] [Related]