These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Structures of branched dextrins produced by saccharifying -amylase of Bacillus subtilis. Umeki K; Yamamoto T J Biochem; 1972 Nov; 72(5):1219-26. PubMed ID: 4630785 [No Abstract] [Full Text] [Related]
26. The metabolic role of debranching enzymes. Palmer TN; Wöber G Biochem Soc Trans; 1975; 3(1):53-6. PubMed ID: 1168594 [No Abstract] [Full Text] [Related]
27. Intestinal carbohydrase activity and carbohydrate utilization in mature sheep. Hembry FG; Bell MC; Hall RF J Nutr; 1967 Oct; 93(2):175-81. PubMed ID: 6052989 [No Abstract] [Full Text] [Related]
28. The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. WALKER GJ; WHELAN WJ Biochem J; 1960 Aug; 76(2):264-8. PubMed ID: 13842508 [No Abstract] [Full Text] [Related]
29. Starch degradation by the mould Trichoderma viride. II. Regulation of enzyme synthesis. Schellart JA; Arem EJ; Boekel MA; Middelhoven WJ Antonie Van Leeuwenhoek; 1976; 42(3):239-44. PubMed ID: 1086639 [TBL] [Abstract][Full Text] [Related]
30. The maltodextrin system of Escherichia coli: metabolism and transport. Dippel R; Boos W J Bacteriol; 2005 Dec; 187(24):8322-31. PubMed ID: 16321936 [TBL] [Abstract][Full Text] [Related]
31. Enzymatic preparation of radiolabeled linear maltodextrins and cyclodextrins of high specific activity from [14C] maltose using amylomaltase, cyclodextrin glucosyltransferase and cyclodextrinase. Pajatsch M; Böck A; Boos W Carbohydr Res; 1998 Feb; 307(3-4):375-9. PubMed ID: 9675373 [TBL] [Abstract][Full Text] [Related]
32. [Specificity of the action of neutral alpha-oligoglusidases from the rabbit liver]. Ushakova NA; Lukomskaia LS Biokhimiia; 1974; 39(4):732-9. PubMed ID: 4441568 [No Abstract] [Full Text] [Related]
33. Formation of isoamylase by Pseudomonas. Harada T; Yokobayashi K; Misaki A Appl Microbiol; 1968 Oct; 16(10):1439-44. PubMed ID: 5684197 [TBL] [Abstract][Full Text] [Related]
34. Catabolite repression of cellulase formation in Trichoderma viride. Nisizawa T; Suzuki H; Nisizawa K J Biochem; 1972 Jun; 71(6):999-1007. PubMed ID: 4672572 [No Abstract] [Full Text] [Related]
35. Characteristics of alpha-amylase formation by Bacillus subtilis. Coleman G; Grant MA Nature; 1966 Jul; 211(5046):306-7. PubMed ID: 4960953 [No Abstract] [Full Text] [Related]
36. The maltase, glucoamylase and transglucosylase activities of acid -glucosidase from rabbit muscle. Palmer TN Biochem J; 1971 Oct; 124(4):713-24. PubMed ID: 5289198 [TBL] [Abstract][Full Text] [Related]
37. The hydrolysis of the naturally occurring alpha-glucosides by the human intestinal mucosa. Eggermont E Eur J Biochem; 1969 Jul; 9(4):483-7. PubMed ID: 5806498 [No Abstract] [Full Text] [Related]
38. The mechanism of carbohydrase action. 6. Structure of a salivary alpha-amylase limit dextrin from amylopectin. BINES BJ; WHELAN WJ Biochem J; 1960 Aug; 76(2):253-7. PubMed ID: 13800751 [No Abstract] [Full Text] [Related]
39. Preparation of an immobilized two-enzyme system, beta-amylase-pullulanase, to an acrylic copolymer for the conversion of starch to maltose. II. Cocoupling of the enzymes and use in a packed bed column. Mårtensson K Biotechnol Bioeng; 1974 May; 16(5):579-91. PubMed ID: 4857360 [No Abstract] [Full Text] [Related]
40. Metabolism of polysaccharides by the Streptococcus mutants dexB gene product. Whiting GC; Sutcliffe IC; Russell RR J Gen Microbiol; 1993 Sep; 139(9):2019-26. PubMed ID: 7504068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]