These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4812637)

  • 1. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.
    Nakajima S; Bastian J
    J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action potential in the transverse tubules and its role in the activation of skeletal muscle.
    Bastian J; Nakajima S
    J Gen Physiol; 1974 Feb; 63(2):257-78. PubMed ID: 4812638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonicity-induced inhibition of excitation-contraction coupling in Xenopus twitch fibers.
    Sato Y; Fujino M
    Jpn J Physiol; 1987; 37(5):947-53. PubMed ID: 3449670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the double sucrose-gap voltage clamp technique as applied to frog atrial muscle.
    Tarr M; Trank JW
    Biophys J; 1974 Sep; 14(9):627-43. PubMed ID: 4547136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.
    Gage PW; Eisenberg RS
    J Gen Physiol; 1969 Mar; 53(3):265-78. PubMed ID: 5767332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic optical and passive electrical properties of cut frog twitch fibers.
    Irving M; Maylie J; Sizto NL; Chandler WK
    J Gen Physiol; 1987 Jan; 89(1):1-40. PubMed ID: 3494099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume and twitch tension changes in single muscle fibers in hypertonic solutions.
    Caputo C
    J Gen Physiol; 1968 Nov; 52(5):793-809. PubMed ID: 5688084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes in single muscle fibers after stimulation at a low frequency.
    Eisenberg BR; Gilai A
    J Gen Physiol; 1979 Jul; 74(1):1-16. PubMed ID: 479818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hypertonic solutions on contraction of frog tonic muscle fibers.
    Godt RE; Kirby AC; Gordon AM
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C148-53. PubMed ID: 6607680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of glycerin removal on the electrical resistance of isolated muscle fiber in the frog].
    Shvinka NE; Caffier G
    Tsitologiia; 1984 May; 26(5):610-4. PubMed ID: 6332400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by hypertonic solutions of Ca-dependent electrogenesis in single crab muscle fibers.
    Suarez-Kurtz G; Sorenson AL
    J Gen Physiol; 1977 Oct; 70(4):491-505. PubMed ID: 915472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations of the double sucrose gap voltage clamp technique in tension-voltage determinations on frog atrial muscle.
    Tarr M; Trank JW
    Circ Res; 1976 Jul; 39(1):106-12. PubMed ID: 1277400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spread of the action potential through the T-system in hagfish twitch muscle fibres.
    Nicolaysen K
    Acta Physiol Scand; 1976 Jan; 96(1):29-49. PubMed ID: 3090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potentials, afterpotentials, and excitation-contraction coupling in frog sartorius fibers without transverse tubules.
    Gage PW; Eisenberg RS
    J Gen Physiol; 1969 Mar; 53(3):298-310. PubMed ID: 5767334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of low-level activation on the mechanical properties of isolated frog muscle fibers.
    Lännergren J
    J Gen Physiol; 1971 Aug; 58(2):145-62. PubMed ID: 5559620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiology and dye-coupling are sexually dimorphic characteristics of individual laryngeal muscle fibers in Xenopus laevis.
    Tobias ML; Kelley DB
    J Neurosci; 1988 Jul; 8(7):2422-9. PubMed ID: 3249234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction.
    Pemrick SM; Edwards C
    J Gen Physiol; 1974 Nov; 64(5):551-67. PubMed ID: 4443791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue mechanisms in single Xenopus muscle fibers of different types.
    Lännergren J; Westerblad H
    Prog Clin Biol Res; 1989; 315():99-107. PubMed ID: 2798524
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.