These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4812638)

  • 1. Action potential in the transverse tubules and its role in the activation of skeletal muscle.
    Bastian J; Nakajima S
    J Gen Physiol; 1974 Feb; 63(2):257-78. PubMed ID: 4812638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.
    Nakajima S; Bastian J
    J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonicity-induced inhibition of excitation-contraction coupling in Xenopus twitch fibers.
    Sato Y; Fujino M
    Jpn J Physiol; 1987; 37(5):947-53. PubMed ID: 3449670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile activation in frog skeletal muscle.
    Costantin LL
    J Gen Physiol; 1974 Jun; 63(6):657-74. PubMed ID: 4545389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low Na on the tetanic contractility of frog skeletal muscle.
    Hatae J; Kawata H
    Jpn J Physiol; 1984; 34(4):629-39. PubMed ID: 6503029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
    Cairns SP; Taberner AJ; Loiselle DS
    J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on post-tetanic potentiation in human dorsiflexor muscles.
    Gossen ER; Allingham K; Sale DG
    Can J Physiol Pharmacol; 2001 Jan; 79(1):49-58. PubMed ID: 11201501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease in the size of tetanic responses produced by nitrendipine or by extracellular calcium ion removal without blocking twitches or action potentials in skeletal muscle.
    Oz M; Frank GB
    J Pharmacol Exp Ther; 1991 May; 257(2):575-81. PubMed ID: 1903444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of external cadmium ions on excitation-contraction coupling in rat soleus fibres.
    Mould J; Dulhunty AF
    Pflugers Arch; 1999 Jan; 437(2):197-203. PubMed ID: 9929559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of verapamil and Ca free solution on mechanical and electrical properties in fast twitch mammalian skeletal muscle.
    Delbono O; Obejero Paz CA; Muchnik S
    Acta Physiol Pharmacol Latinoam; 1987; 37(4):423-35. PubMed ID: 3274022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile properties of fast and slow twitch muscles of the rat at temperatures between 6 and 42 degrees C.
    Kössler F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):815-22. PubMed ID: 3446207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile activation in scorpion striated muscle fibers. Dependence on voltage and external calcium.
    Gilly WF; Scheuer T
    J Gen Physiol; 1984 Sep; 84(3):321-45. PubMed ID: 6481333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-clamp of cut-end skeletal muscle fibre: a diffusion experiment.
    Pater C; Sauviat MP
    Gen Physiol Biophys; 1987 Aug; 6(4):305-19. PubMed ID: 3499362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study under the condition of constant current of contractile responses of rapid skeletal muscle fibers of the frog: demonstration of 2 components].
    Caillé J; Rougier O; Garnier D
    C R Acad Hebd Seances Acad Sci D; 1971 Oct; 273(16):1398-401. PubMed ID: 5002501
    [No Abstract]   [Full Text] [Related]  

  • 17. Isometric twitch and tetanic contraction of frog skeletal muscles at temperatures between 0 to 30 degrees C.
    Kössler F; Lange F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):809-13. PubMed ID: 3502248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potentials, afterpotentials, and excitation-contraction coupling in frog sartorius fibers without transverse tubules.
    Gage PW; Eisenberg RS
    J Gen Physiol; 1969 Mar; 53(3):298-310. PubMed ID: 5767334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spread of the action potential through the T-system in hagfish twitch muscle fibres.
    Nicolaysen K
    Acta Physiol Scand; 1976 Jan; 96(1):29-49. PubMed ID: 3090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force development of fast and slow skeletal muscle at different muscle lengths.
    Wallinga-de Jonge W; Boom HB; Boon KL; Griep PA; Lammerée GC
    Am J Physiol; 1980 Sep; 239(3):C98-104. PubMed ID: 7435554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.