These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 4813157)
1. Restricted transport in small pores. A model for steric exclusion and hindered particle motion. Anderson JL; Quinn JA Biophys J; 1974 Feb; 14(2):130-50. PubMed ID: 4813157 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation. Levitt DG Biophys J; 1973 Feb; 13(2):186-206. PubMed ID: 4702015 [TBL] [Abstract][Full Text] [Related]
3. The analysis of convection and diffusion in capillary beds. Leonard EF; Jorgensen SB Annu Rev Biophys Bioeng; 1974; 3(0):293-339. PubMed ID: 4607560 [No Abstract] [Full Text] [Related]
4. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions]. Slezak A Polim Med; 2006; 36(4):37-42. PubMed ID: 17402231 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. The kinetics of osmotic transport through pores of molecular dimensions. Longuet-Higgins HC; Austin G Biophys J; 1966 Mar; 6(2):217-24. PubMed ID: 5960142 [TBL] [Abstract][Full Text] [Related]
7. General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore. Levitt DG Biophys J; 1975 Jun; 15(6):533-51. PubMed ID: 1148357 [TBL] [Abstract][Full Text] [Related]
8. A theoretical study of restricted convection-diffusion as applied to blood-tissue barrier exchange. Aberg B Acta Physiol Scand; 1975 Jul; 94(3):301-8. PubMed ID: 1180075 [TBL] [Abstract][Full Text] [Related]
9. Model pores of molecular dimension. The preparation and characterization of track-etched membranes. Quinn JA; Anderson JL; Ho WS; Petzny WJ Biophys J; 1972 Aug; 12(8):990-1007. PubMed ID: 4339801 [TBL] [Abstract][Full Text] [Related]
10. Rate theory models for ion transport through rigid pores. I. Time-dependent analysis in the case of vanishing interactions. Frehland E; Stephan W J Theor Biol; 1983 Jul; 103(1):77-97. PubMed ID: 6621070 [TBL] [Abstract][Full Text] [Related]
11. Brownian Particle Adsorption in Unsteady-State Viscous Flows in Pores. Peters MH; Pal SK J Colloid Interface Sci; 1997 Feb; 186(2):477-92. PubMed ID: 9056378 [TBL] [Abstract][Full Text] [Related]
12. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations. Barry PH Biophys J; 1998 Jun; 74(6):2903-5. PubMed ID: 9635743 [TBL] [Abstract][Full Text] [Related]
13. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A; Grzegorczyn S Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation. Levitt DG Biopolymers; 1973 Feb; 13(2):186-206. PubMed ID: 4711486 [No Abstract] [Full Text] [Related]
15. Macromolecular crowding directs the motion of small molecules inside cells. Smith S; Cianci C; Grima R J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28615492 [TBL] [Abstract][Full Text] [Related]
16. Effect of non-well-mixed compartment and bulk flow on diffusion through a pore. Wang CY Math Biosci; 1989 Jul; 95(1):99-109. PubMed ID: 2520180 [TBL] [Abstract][Full Text] [Related]
17. Diffusion and convection across heteroporous membranes: a simple macroscopic equation. Groome LJ; Kinasewitz GT; Diana JN Microvasc Res; 1983 Nov; 26(3):307-22. PubMed ID: 6656666 [TBL] [Abstract][Full Text] [Related]
18. Brownian motion in biological membranes. Saffman PG; Delbrück M Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3111-3. PubMed ID: 1059096 [TBL] [Abstract][Full Text] [Related]
19. [A description of the nonsteady-state phenomena of fluid transport in the lungs based on the equations of linear thermodynamic nonequilibrium]. Rozental' VV; Serikov VB; Beliakov NA Nauchnye Doki Vyss Shkoly Biol Nauki; 1989; (6):62-8. PubMed ID: 2804174 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic equations for membrane transport of multicomponent solutions. Suchanek G Gen Physiol Biophys; 2006 Mar; 25(1):53-63. PubMed ID: 16714775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]