These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 4813874)
1. Conductivity of sheared suspensions of ellipsoidal particles with application to blood flow. Edgerton RH IEEE Trans Biomed Eng; 1974 Jan; 21(1):33-43. PubMed ID: 4813874 [No Abstract] [Full Text] [Related]
2. [Significance of the reversible aggregation of erythrocytes in changes in the electric conductivity of flowing blood]. Shadrina NKh; Zelikson BB; Levtov VA; Trifonova EI Fiziol Zh SSSR Im I M Sechenova; 1972 Apr; 58(4):557-62. PubMed ID: 5027251 [No Abstract] [Full Text] [Related]
3. On the flow dependency of the electrical conductivity of blood. Hoetink AE; Faes TJ; Visser KR; Heethaar RM IEEE Trans Biomed Eng; 2004 Jul; 51(7):1251-61. PubMed ID: 15248541 [TBL] [Abstract][Full Text] [Related]
4. Model particles and red cells in flowing concentrated suspensions. Goldsmith HL; Mason SG Bibl Anat; 1969; 10():1-8. PubMed ID: 5407361 [No Abstract] [Full Text] [Related]
5. The electrical conductivity of flowing blood. Frewer RA Biomed Eng; 1974 Dec; 9(12):552-5. PubMed ID: 4429754 [No Abstract] [Full Text] [Related]
6. Blood-flow sensor impedance experiments. Davis M Med Res Eng; 1969; 8(5):20-30. PubMed ID: 5406349 [No Abstract] [Full Text] [Related]
7. Mathematical concepts of blood flow and blood rheology. Trowbridge EA Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908 [No Abstract] [Full Text] [Related]
8. The microrheology of red blood cell suspensions. Goldsmith HL J Gen Physiol; 1968 Jul; 52(1):5Suppl-28s. PubMed ID: 5742835 [No Abstract] [Full Text] [Related]
9. Effect of fluid shear on mass transport in flowing blood. Keller KH Fed Proc; 1971; 30(5):1591-9. PubMed ID: 5119365 [No Abstract] [Full Text] [Related]
10. Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries. Hochmuth RM; Sutera SP Bibl Anat; 1969; 10():113-23. PubMed ID: 5407354 [No Abstract] [Full Text] [Related]
11. Engineering simulation of the viscous behavior of whole blood using suspensions of flexible particles. Tickner EG; Sacks AH Circ Res; 1969 Oct; 25(4):389-400. PubMed ID: 5347220 [No Abstract] [Full Text] [Related]
12. The behavior of the red blood cells in flowing blood which accounts for conductivity changes. Liebman FM; Bagno S Biomed Sci Instrum; 1968; 4():25-35. PubMed ID: 5638848 [No Abstract] [Full Text] [Related]
13. The capillary flow of suspensions of human red blood cells in plasma substitutes. Barras JP Bibl Anat; 1969; 10():38-44. PubMed ID: 5407392 [No Abstract] [Full Text] [Related]
14. [Changes in the electroconductivity of blood flowing at different rates]. Zelikson BB Fiziol Zh SSSR Im I M Sechenova; 1973 Oct; 59(10):1508-15. PubMed ID: 4787862 [No Abstract] [Full Text] [Related]
15. Red cell motions and wall interactions in tube flow. Goldsmith HL Fed Proc; 1971; 30(5):1578-90. PubMed ID: 5119364 [No Abstract] [Full Text] [Related]
16. Some flow properties of erythrocytes and rouleaux. Goldsmith HL Bibl Anat; 1967; 9():259-65. PubMed ID: 6029874 [No Abstract] [Full Text] [Related]
17. [The dynamics of blood flow]. Bru Villaseca L An R Acad Nac Med (Madr); 1984; 101(3):289-304. PubMed ID: 6532236 [No Abstract] [Full Text] [Related]
18. [Theoretical and experimental study of the concept of zone of influence at a bifurcation of the vascular bed]. Stoltz JF; Larcan A; Lefort M; Wackenheim E Angiologica; 1973; 10(1):1-9. PubMed ID: 4710546 [No Abstract] [Full Text] [Related]
20. [A model for the distribution of flow rates in the vascular bed]. Lefort M; Stoltz JF; Larcan A Angiologica; 1971; 8(2):65-76. PubMed ID: 5120566 [No Abstract] [Full Text] [Related] [Next] [New Search]