These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 4814305)
1. Effects of an anti-G suit on the hemodynamic and renal responses to positive (+Gz) acceleration. Shubrooks SJ; Epstein M; Duncan DC J Appl Physiol; 1974 Mar; 36(3):345-9. PubMed ID: 4814305 [No Abstract] [Full Text] [Related]
2. Effects of positive acceleration (+Gz) on renal function and plasma renin in normal man. Epstein M; Shubrooks SJ; Fishman LM; Duncan DC J Appl Physiol; 1974 Mar; 36(3):340-4. PubMed ID: 4814304 [No Abstract] [Full Text] [Related]
3. Positive-pressure breathing as a protective technique during +Gz acceleration. Shubrooks SJ J Appl Physiol; 1973 Aug; 35(2):294-8. PubMed ID: 4579120 [No Abstract] [Full Text] [Related]
4. Hemodynamics of miniature swine during +Gz stress with and without anti-G support. Burns JW; Parnell MJ; Burton RR J Appl Physiol (1985); 1986 May; 60(5):1628-37. PubMed ID: 3519569 [TBL] [Abstract][Full Text] [Related]
9. Effect of water immersion on renin-aldosterone and renal sodium handling in normal man. Epstein M; Saruta T J Appl Physiol; 1971 Sep; 31(3):368-74. PubMed ID: 5111855 [No Abstract] [Full Text] [Related]
10. Renal nerves and renal responses to volume expansion in conscious monkeys. Peterson TV; Benjamin BA; Hurst NL Am J Physiol; 1988 Sep; 255(3 Pt 2):R388-94. PubMed ID: 3414833 [TBL] [Abstract][Full Text] [Related]
11. The effect of respiratory activity on brain blood flow during exposure to +Gz acceleration. Walichnowski W; Kowalski W; Bulski W J Gravit Physiol; 1996 Sep; 3(2):103-4. PubMed ID: 11540262 [TBL] [Abstract][Full Text] [Related]
12. Effects of simulated weightlessness on responses of untrained men to +Gz acceleration. Jacobson LB; Hyatt KH; Sandler H J Appl Physiol; 1974 Jun; 36(6):745-52. PubMed ID: 4829916 [No Abstract] [Full Text] [Related]
13. Effect of chronic experimental unilateral renal vein hypertension on renal hemodynamics, concentrating ability, urine flow, and sodium excretion. Mullane JF; Gliedman ML Surgery; 1969 Aug; 66(2):368-74. PubMed ID: 5797224 [No Abstract] [Full Text] [Related]
14. Development of renal response to blood volume expansion in the rat. Bengele HH; Solomon S Am J Physiol; 1974 Aug; 227(2):364-8. PubMed ID: 4851344 [No Abstract] [Full Text] [Related]
15. The application of positive pressure breathing for improving +Gz acceleration tolerance. Domaszuk J Aviat Space Environ Med; 1983 Apr; 54(4):334-7. PubMed ID: 6342597 [TBL] [Abstract][Full Text] [Related]
16. Demonstraton of a role of physical factors as determinants of the natriuretic response to volume expansion. Martino JA; Earley LE J Clin Invest; 1967 Dec; 46(12):1963-78. PubMed ID: 6074001 [TBL] [Abstract][Full Text] [Related]
17. Intrarenal perfusion in the young "essential" hypertensive: a subpopulation resistant to sodium restriction. Hollenberg NK; Merrill JP Trans Assoc Am Physicians; 1970; 83():93-101. PubMed ID: 5505399 [No Abstract] [Full Text] [Related]
18. Cardiovascular changes during and following 1-min exposure to +Gz stress. Peterson DF; Bishop VS; Erickson HH Aviat Space Environ Med; 1975 Jun; 46(6):775-9. PubMed ID: 1156282 [TBL] [Abstract][Full Text] [Related]
19. An acute animal model that simulates the hemodynamic situations present during +Gz acceleration. Self DA; Hainsworth R; Krock LP; Doe CP; Latham RD Aviat Space Environ Med; 1994 May; 65(5 Suppl):A80-9. PubMed ID: 8018086 [TBL] [Abstract][Full Text] [Related]
20. [Changes of vein pressure and renal function by different positions of pregnant women. (A contribution to the supine hypotensive syndrome) (author's transl)]. Friedberg V; Martin K; Gerteis R Geburtshilfe Frauenheilkd; 1974 Oct; 34(10):809-17. PubMed ID: 4442681 [No Abstract] [Full Text] [Related] [Next] [New Search]