These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4814340)
1. Nuclear magnetic resonance investigation of rhodanese sulfhydryl groups. A chloride ion probe study. Man M; Bryant RG J Biol Chem; 1974 Feb; 249(4):1109-12. PubMed ID: 4814340 [No Abstract] [Full Text] [Related]
2. The zinc content of rhodanese. Bryant RG; Rajender S Biochem Biophys Res Commun; 1971 Oct; 45(2):532-7. PubMed ID: 5168599 [No Abstract] [Full Text] [Related]
3. The interdependence of substrate and protein transformations in rhodanese catalysis. I. Enzyme interactions with substrate, product, and inhibitor anions. Wang SF; Volini M J Biol Chem; 1973 Nov; 248(21):7376-85. PubMed ID: 4795695 [No Abstract] [Full Text] [Related]
4. The interdependence of substrate and protein transformations in rhodanese catalysis. II. Enzyme conformational changes significant for catalysis. Volini M; Wang SF J Biol Chem; 1973 Nov; 248(21):7386-91. PubMed ID: 4795696 [No Abstract] [Full Text] [Related]
8. A study of dithiothreitol inactivation of the enzyme rhodanese. Kim SK; Horowitz PM Biochem Biophys Res Commun; 1975 Nov; 67(1):433-9. PubMed ID: 1201034 [No Abstract] [Full Text] [Related]
9. Human liver rhodanese. Nonlinear kinetic behavior in a double displacement mechanism. Jarabak R; Westley J Biochemistry; 1974 Jul; 13(16):3233-6. PubMed ID: 4858225 [No Abstract] [Full Text] [Related]
10. Inhibition of bovine liver rhodanese by alpha-ketoglutarate. Oi S J Biochem; 1974 Aug; 76(2):455-8. PubMed ID: 4426888 [No Abstract] [Full Text] [Related]
11. The interdependence of substrate and protein transformations in rhodanese catalysis. 3. Enzyme changes outside the catalytic cycle. Volini M; Wang SF J Biol Chem; 1973 Nov; 248(21):7392-5. PubMed ID: 4798879 [No Abstract] [Full Text] [Related]
12. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation. Horowitz PM; Bowman S J Biol Chem; 1989 Feb; 264(6):3311-6. PubMed ID: 2914953 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates. Prasad AR; Horowitz PM Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649 [TBL] [Abstract][Full Text] [Related]
14. Crystallographic data for rhodanese from bovine liver. Drenth J; Smit JD Biochem Biophys Res Commun; 1971 Dec; 45(5):1320-2. PubMed ID: 5135514 [No Abstract] [Full Text] [Related]
15. Thermodynamics of zinc binding to rhodanese. Bolen DW; Rajender S Arch Biochem Biophys; 1974 Apr; 161(2):435-40. PubMed ID: 4839040 [No Abstract] [Full Text] [Related]
16. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid). Pensa B; Costa M; Pecci L; Cannella C; Cavallini D Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854 [TBL] [Abstract][Full Text] [Related]
18. The titration of rhodanese with substrates. Cannella C; Pecci L; Pensa B; Costa M; Cavallini D FEBS Lett; 1974 Dec; 49(1):22-4. PubMed ID: 4474954 [No Abstract] [Full Text] [Related]
19. Mixed alternate substrate kinetics. A technique for distinguishing independent-site from same-site catalytic activity. Jarabak R; Westley J Biochemistry; 1974 Jul; 13(16):3240-3. PubMed ID: 4858226 [No Abstract] [Full Text] [Related]
20. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese. Guido K; Horowitz P Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]