These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4816462)

  • 1. Effect of palmitic acid utilization on cell division in Mycobacterium avium.
    McCarthy C
    Infect Immun; 1974 Feb; 9(2):363-72. PubMed ID: 4816462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and release of sulfolipid by Mycobacterium avium during growth andcell division.
    McCarthy C
    Infect Immun; 1976 Nov; 14(5):1241-52. PubMed ID: 977128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of palmitic acid by Mycobacterium avium.
    McCarthy C
    Infect Immun; 1971 Sep; 4(3):199-204. PubMed ID: 5154882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free fatty acid and triglyceride content of Mycobacterium avium cultured under different growth conditions.
    McCarthy CM
    Am Rev Respir Dis; 1984 Jan; 129(1):96-100. PubMed ID: 6703491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic counting in growth studies of Mycobacterium avium.
    McCarthy C
    Appl Microbiol; 1971 Oct; 22(4):546-51. PubMed ID: 4943270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonium ion requirement for the cell cycle of Mycobacterium avium.
    McCarthy C
    Infect Immun; 1978 Jan; 19(1):304-11. PubMed ID: 624592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water soluble complexes of C14 and C16 fatty acids and alcohols in media for cultivation of leprosy-derived psychrophilic mycobacteria.
    Kato L; Szejtli J; Szente L
    Int J Lepr Other Mycobact Dis; 1994 Mar; 62(1):75-88. PubMed ID: 8189091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water soluble complex of palmitic acid in media for cultivation of leprosy-derived psychrophilic mycobacteria from Mycobacterium leprae infected tissues.
    Kátó L; Szejtli J; Szente L
    Acta Microbiol Hung; 1993; 40(1):47-58. PubMed ID: 8304006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fatty acid supplementation on the lipid composition of Mycobacterium smegmatis ATCC 607, grown at 27 degrees and 37 degrees C.
    Khuller GK; Taneja R; Nath N
    J Appl Bacteriol; 1983 Feb; 54(1):63-8. PubMed ID: 6853393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and cell division of Mycobacterium avium.
    Rastogi N; David HL
    J Gen Microbiol; 1981 Sep; 126(1):77-84. PubMed ID: 6174681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography.
    Lambert MA; Moss CW; Silcox VA; Good RC
    J Clin Microbiol; 1986 Apr; 23(4):731-6. PubMed ID: 3084554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that affect the cell cycle of Mycobacterium avium.
    McCarthy C; Ashbaugh P
    Rev Infect Dis; 1981; 3(5):914-25. PubMed ID: 7339822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth effects on the insulin alteration of Chang liver fatty acid metabolism.
    Quarfordt SH; Lazlo Jakoi RU; Nathans A; Hilderman H
    Life Sci; 1973 Aug; 13(4):377-82. PubMed ID: 4752490
    [No Abstract]   [Full Text] [Related]  

  • 14. Continuous culture of Mycobacterium avium limited for ammonia.
    McCarthy CM
    Am Rev Respir Dis; 1983 Feb; 127(2):193-7. PubMed ID: 6131634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of essential-fatty-acid-deficient keratinocytes requires palmitic acid.
    Marcelo CL; Rhodes LM; Dunham WR
    J Invest Dermatol; 1994 Oct; 103(4):564-8. PubMed ID: 7930683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent acid-fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth.
    Strahl ED; Gillaspy GE; Falkinham JO
    Appl Environ Microbiol; 2001 Oct; 67(10):4432-9. PubMed ID: 11571139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stages of uptake and incorporation of micellar palmitic acid by hamster proximal intestinal mucosa.
    Mishkin S; Yalovsky M; Kessler JI
    J Lipid Res; 1972 Mar; 13(2):155-68. PubMed ID: 5016298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of an excess uptake of qualitatively different fatty products on the makeup of the lipids and the utilization of exogenous fatty acids in their synthesis].
    Markelova VF; Liapkov BG
    Vopr Pitan; 1974; (4):8-11. PubMed ID: 4446508
    [No Abstract]   [Full Text] [Related]  

  • 19. Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism.
    Murthy S; Albright E; Mathur SN; Field FJ
    J Lipid Res; 1988 Jun; 29(6):773-80. PubMed ID: 2844941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternate pathways of linolenic acid biosynthesis in growing cultures of Penicillium chrysogenum.
    Richards RL; Quackenbush FW
    Arch Biochem Biophys; 1974 Dec; 165(2):780-6. PubMed ID: 4216304
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.