BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 481660)

  • 1. Correlation between the NEFA and acetyl-CoA content and the N-acetylation rate of p-aminohippurate in the kidneys of hypertensive Goldblatt rats. Effect of NEFA on the renal N-acetyltransferase activity.
    Mályusz M; Laucht R; Gutsche HU; Rumpf KW
    Nephron; 1979; 23(5):241-6. PubMed ID: 481660
    [No Abstract]   [Full Text] [Related]  

  • 2. Interdependence of O2 consumption, renal NEFA pattern and N-acetylation of PAH in the isolated perfused rat kidney. Effect of long-chain NEFA and of PGF2 alpha on the renal N-acetyltransferase activity.
    Mályusz M; Ehrens J; Uschtrin D
    Ren Physiol; 1982; 5(4):165-72. PubMed ID: 7122980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of castration on the experimental renal hypertension of the rat. Blood pressure, nephrosclerosis, long-chain fatty acids, and N-acetylation of PAH in the kidney.
    Mályusz M; Ehrens HJ; Wrigge P
    Nephron; 1985; 40(1):96-9. PubMed ID: 4000342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal excretion and metabolism of p-aminohippurate in the isolated perfused rat kidney.
    Lee LJ; Smith DE
    Pharm Res; 1988 Nov; 5(11):745-7. PubMed ID: 3247282
    [No Abstract]   [Full Text] [Related]  

  • 5. Acetyl-coenzyme-A content and enzyme activities of kidneys from hypertensive Goldblatt-rats.
    Rumpf KW; Mályusz M
    Pflugers Arch; 1972; 332():Suppl 332:R25. PubMed ID: 5065991
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of sodium ion in renal transport of p-aminohippurate in vitro.
    Park YS; Lee SM
    Yonsei Med J; 1980; 21(2):123-8. PubMed ID: 7314649
    [No Abstract]   [Full Text] [Related]  

  • 7. [The metabolism of p-aminohippurate in the kidney of normal rats and rats with experimental Goldblatt-hypertension].
    Mályusz M; Girndt J; Mályusz G; Ochwadt B
    Pflugers Arch; 1972; 333(2):156-65. PubMed ID: 5065510
    [No Abstract]   [Full Text] [Related]  

  • 8. Dissociation of renal organic anion transport from renal lipid metabolism. I. Endogenous nonesterified fatty acids (NEFA) as determinants of transport.
    Stroo WE; Hook JB
    J Pharmacol Exp Ther; 1983 Oct; 227(1):55-9. PubMed ID: 6620172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunomodulation and drug acetylation: influence of the immunomodulator tilorone on hepatic, renal and blood N-acetyltransferase activity and on hepatic cytosolic acetyl coenzyme A content.
    Drobitch RK; Tomilo M; Svensson CK
    Biochem Pharmacol; 1992 Apr; 43(7):1643-8. PubMed ID: 1567485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of p-aminohippurate excretion in immature rats by dexamethasone treatment.
    Bräunlich H; Köhler A; Schmidt I
    Med Biol; 1986; 64(5):267-70. PubMed ID: 3807441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of renal cortical palmitate utilization and p-aminohippurate (PAH) accumulation after penicillin treatment of neonatal rabbits.
    Hewitt WR; Hook JB
    J Pharmacol Exp Ther; 1978 Dec; 207(3):726-36. PubMed ID: 731428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Concentration of p-aminohippuric acid in the serum and kidney tissue during stimulation of renal excretion of foreign materials].
    Storch R; Bräunlich H
    Acta Biol Med Ger; 1977; 36(2):237-44. PubMed ID: 906735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anionic and nonionic contrast media on renal extraction of para-aminohippurate in the dog.
    Dibona GF
    Proc Soc Exp Biol Med; 1978 Mar; 157(3):453-5. PubMed ID: 634987
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of various forms of hypertension on the metabolism of aromatic amines, blood glucose levels and renal in vitro gluconeogenesis in the rat.
    Henning HV; Girndt J; Züchner C; Scheler F
    Curr Probl Clin Biochem; 1976; 6():74-83. PubMed ID: 1087219
    [No Abstract]   [Full Text] [Related]  

  • 15. Aging changes in renal handling of p-aminohippurate.
    Wabner CL; Chen TS
    Am J Physiol; 1987 May; 252(5 Pt 2):R871-7. PubMed ID: 3578554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in renal Na-K-ATPase activity and PAH transport kinetics in uninephrectomized rats and cold exposed hamsters.
    Park YS; Lee SM; Hwang AR
    Yonsei Med J; 1979; 20(1):8-16. PubMed ID: 230656
    [No Abstract]   [Full Text] [Related]  

  • 17. Renal extraction of p-aminohippurate: physiological and clinical observations.
    Aurell M; Fritjofsson A; Granerus G; Grimby G
    Contrib Nephrol; 1978; 11():14-8. PubMed ID: 699580
    [No Abstract]   [Full Text] [Related]  

  • 18. Uptake and acetylation of p-aminohippurate by slices of mouse kidney cortex.
    Carpenter HM; Mudge GH
    J Pharmacol Exp Ther; 1980 May; 213(2):350-4. PubMed ID: 7365694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of renal prostaglandin and p-aminohippuric acid transport processes.
    Bito LZ; Baroody RA
    Am J Physiol; 1978 Jan; 234(1):F80-8. PubMed ID: 623269
    [No Abstract]   [Full Text] [Related]  

  • 20. Renal clearance of urea, inulin, and p-aminohippurate in heat-acclimated rats.
    Chayoth R; Kleinman D; Kaplanski J; Sod Moriah UA
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):731-2. PubMed ID: 6490459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.