These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Action potential from A. V. node transitional cells. Alanís J; Benítez D Arch Int Physiol Biochim; 1964 Nov; 72(5):765-75. PubMed ID: 4157531 [No Abstract] [Full Text] [Related]
4. Effect of external K+ on the delayed K+ current in single rabbit Purkinje cells. Scamps F; Carmeliet E Pflugers Arch; 1989; 414 Suppl 1():S169-70. PubMed ID: 2780247 [No Abstract] [Full Text] [Related]
5. Physiology of canine intraventricular conduction and endocardial excitation. Myerburg RJ; Nilsson K; Gelband H Circ Res; 1972 Feb; 30(2):217-43. PubMed ID: 5061320 [No Abstract] [Full Text] [Related]
6. Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features. Martinez-Palomo A; Alanis J; Benitez D J Cell Biol; 1970 Oct; 47(1):1-17. PubMed ID: 5513552 [TBL] [Abstract][Full Text] [Related]
7. Delayed K+ current and external K+ in single cardiac Purkinje cells. Scamps F; Carmeliet E Am J Physiol; 1989 Dec; 257(6 Pt 1):C1086-92. PubMed ID: 2610249 [TBL] [Abstract][Full Text] [Related]
8. Interrelationships between external potassium concentration and lidocaine: effects on canine Purkinje fiber. Obayashi K; Hayakawa H; Mandel WJ Am Heart J; 1975 Feb; 89(2):221-6. PubMed ID: 1114948 [No Abstract] [Full Text] [Related]
9. Overdrive excitation: onset of activity following fast drive in cardiac Purkinje fibers exposed to norepinephrine. Vassalle M; Carpentier R Pflugers Arch; 1972; 332(3):198-205. PubMed ID: 5063691 [No Abstract] [Full Text] [Related]
10. Suppression and initiation of idioventricular automaticity during vagal stimulation. Vassalle M; Vagnini FJ; Gourin A; Stuckey JH Am J Physiol; 1967 Jan; 212(1):1-7. PubMed ID: 6016004 [No Abstract] [Full Text] [Related]
11. Correlative ultrastructural and electrophysiological study of the Purkinje system of the heart. Bencosme SA; Trillo A; Alanís J; Benítez D J Electrocardiol; 1969 Jan; 2(1):27-38. PubMed ID: 5780207 [No Abstract] [Full Text] [Related]
12. Interrelationship between automaticity and conduction in Purkinje fibers. Singer DH; Lazzara R; Hoffman BF Circ Res; 1967 Oct; 21(4):537-58. PubMed ID: 6057710 [No Abstract] [Full Text] [Related]
15. The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibers. Miura DS; Hoffman BF; Rosen MR J Gen Physiol; 1977 Apr; 69(4):463-74. PubMed ID: 853287 [TBL] [Abstract][Full Text] [Related]
16. Electrogenic suppression of automaticity in sheep and dog purkinje fibers. Vassalle M Circ Res; 1970 Sep; 27(3):361-77. PubMed ID: 5452735 [No Abstract] [Full Text] [Related]
17. Effect of external potassium and acetylstrophanthidin on conduction velocity of isolated canine Purkinje fibers. Hashimoto K; Moe GK Jpn J Pharmacol; 1985 Apr; 37(4):355-63. PubMed ID: 4010087 [TBL] [Abstract][Full Text] [Related]
18. Electrophysiological observations on the digitalis-potassium interaction in canine Purkinje fibers. Anderson GJ; Bailey JC; Reiser J; Freeman A Circ Res; 1976 Nov; 39(5):717-23. PubMed ID: 184976 [TBL] [Abstract][Full Text] [Related]
19. Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Ferrier GR; Moe GK Circ Res; 1973 Nov; 33(5):508-15. PubMed ID: 4752852 [No Abstract] [Full Text] [Related]
20. Two levels of resting potential in cardiac Purkinje fibers. Gadsby DC; Cranefield PF J Gen Physiol; 1977 Dec; 70(6):725-46. PubMed ID: 591921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]