These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145 [TBL] [Abstract][Full Text] [Related]
6. High power inductive coupling for the establishment of a RF field in tissue for diode stimulation. Schuder JC; Gold JH; Stoeckie H; Holland JA Trans Am Soc Artif Intern Organs; 1975; 21():532-9. PubMed ID: 1146028 [No Abstract] [Full Text] [Related]
7. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis. Bandy B; Walter PB; Moon J; Davison AJ Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668 [TBL] [Abstract][Full Text] [Related]
8. [Results and problems in the long-term use of biogalvanic elements for energy supply of pacemakers]. Schaldach M Thoraxchir Vask Chir; 1970 Oct; 18(5):437-42. PubMed ID: 5275540 [No Abstract] [Full Text] [Related]
9. Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Rosenbaum M; Zhao F; Schröder U; Scholz F Angew Chem Int Ed Engl; 2006 Oct; 45(40):6658-61. PubMed ID: 16969884 [No Abstract] [Full Text] [Related]
10. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell. Zhou M; Deng L; Wen D; Shang L; Jin L; Dong S Biosens Bioelectron; 2009 May; 24(9):2904-8. PubMed ID: 19321330 [TBL] [Abstract][Full Text] [Related]
11. [Atmospheric oxidation of 19-oxocardenolides in aqueous solution]. Repke K; Kubasch U; Carman-Krzan M Arzneimittelforschung; 1966 Nov; 16(11):1469-75. PubMed ID: 6014960 [No Abstract] [Full Text] [Related]
12. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Chaudhuri SK; Lovley DR Nat Biotechnol; 2003 Oct; 21(10):1229-32. PubMed ID: 12960964 [TBL] [Abstract][Full Text] [Related]
13. A 280 microW cm-2 biofuel cell operating at low glucose concentration. Mano N Chem Commun (Camb); 2008 May; (19):2221-3. PubMed ID: 18463746 [TBL] [Abstract][Full Text] [Related]
14. The current status of cardiac pacing. Roy OZ CRC Crit Rev Bioeng; 1975 Jun; 2(3):259-327. PubMed ID: 1095301 [No Abstract] [Full Text] [Related]
15. [Proceedings: Prolongation of funtion time of implantable pacemakers through the reduction of impulse duration]. Wirtzfeld A; Himmler Ch; Lampadius M; Schmück L; Präuer H MMW Munch Med Wochenschr; 1975 May; 117(20):839. PubMed ID: 805964 [No Abstract] [Full Text] [Related]
16. The salicylate trapping method: is oxidation of salicylic acid solution oxygen and time dependent and metal catalysed? Gruber M; Wiesner G; Burger R; Lindner R J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Feb; 831(1-2):320-3. PubMed ID: 16324892 [TBL] [Abstract][Full Text] [Related]
18. The pro-oxidant activity of aluminum. Exley C Free Radic Biol Med; 2004 Feb; 36(3):380-7. PubMed ID: 15036357 [TBL] [Abstract][Full Text] [Related]
19. [Experimentation with a biogalvanic battery as a cardiac stimulator (author's transl)]. Mourot M; Fontenier G; Freschard R; Bleser F; Benichoux R Ann Chir Thorac Cardiovasc; 1975 Apr; 14(2):113-20. PubMed ID: 1147563 [No Abstract] [Full Text] [Related]
20. Comparison between mercury and lithium chemical systems for pacemaker energy source applications. Mosharrafa M Biomed Sci Instrum; 1975; 11():157-61. PubMed ID: 1125369 [No Abstract] [Full Text] [Related] [Next] [New Search]