These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Intestinal absorption in diabetes: binding of D-glucose to brush borders. Olsen WA; Rogers L Endocrinology; 1971 Nov; 89(5):1329-30. PubMed ID: 5097000 [No Abstract] [Full Text] [Related]
6. D-glucose: preferential binding to brush borders disrupted with tris(hydroxymethyl)aminomethane. Faust RG; Wu SL; Faggard ML Science; 1967 Mar; 155(3767):1261-3. PubMed ID: 6018648 [TBL] [Abstract][Full Text] [Related]
7. Evidence for active transport of the dipeptide carnosine (beta-alanyl-L-histidine) by hamster jejunum in vitro. Matthews DM; Addison JM; Burston D Clin Sci Mol Med; 1974 Jun; 46(6):693-705. PubMed ID: 4851937 [No Abstract] [Full Text] [Related]
8. Isolation of a vitamin D-dependent, calcium-binding protein from brush borders of rat duodenal mucosa. Miller A; Ueng TH; Bronner F FEBS Lett; 1979 Jul; 103(2):319-22. PubMed ID: 467677 [No Abstract] [Full Text] [Related]
9. Effect of ethyl acetate on the transport of sodium and glucose in the hamster small intestine in vitro. Esposito G; Faelli A; Capraro V Biochim Biophys Acta; 1976 Mar; 426(3):489-98. PubMed ID: 1268208 [TBL] [Abstract][Full Text] [Related]
10. Glucose- and phlorrhizin-protected thiol groups in pig intestinal brush-border membranes. Smith MW; Ferguson DR; Burton KA Biochem J; 1975 Jun; 147(3):617-9. PubMed ID: 1172665 [TBL] [Abstract][Full Text] [Related]
11. Active sugar transport by the small intestine. The effects of sugars, amino acids, hexosamines, sulfhydryl-reacting compounds, and cations on the preferential binding of D-glucose to tris-disrupted brush borders. Faust RG; Leadbetter MG; Plenge RK; McCaslin AJ J Gen Physiol; 1968 Sep; 52(3):482-94. PubMed ID: 5673303 [TBL] [Abstract][Full Text] [Related]
12. d-Glucose balance in the enterocyte of rat jejunum "in vitro". Capraro V; Esposito G; Faelli A; Pacces N; Tosco M Pflugers Arch; 1982 Mar; 393(1):92-4. PubMed ID: 7088688 [TBL] [Abstract][Full Text] [Related]
13. Vitamin D-dependent, particulate calcium-binding activity and intestinal calcium transport. Kowarski S; Schachter D Am J Physiol; 1975 Nov; 229(5):1198-1204. PubMed ID: 128298 [TBL] [Abstract][Full Text] [Related]
14. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles. Harig JM; Barry JA; Rajendran VM; Soergel KH; Ramaswamy K Am J Physiol; 1989 Mar; 256(3 Pt 1):G618-23. PubMed ID: 2923218 [TBL] [Abstract][Full Text] [Related]
15. Studies on the organization of the brush border in intestinal epithelial cells. VI. Glucose binding to isolated intestinal brush borders and their subfractions. Eichholz A; Howell KE; Crane RK Biochim Biophys Acta; 1969 Oct; 193(1):179-92. PubMed ID: 5349610 [No Abstract] [Full Text] [Related]
16. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Murer H; Hopfer U Proc Natl Acad Sci U S A; 1974 Feb; 71(2):484-8. PubMed ID: 4521818 [TBL] [Abstract][Full Text] [Related]
17. A search for a mucosal iron carrier. Identification of mucosal fractions with rapid turnover of Fe 59 . Pollack S; Campana T; Arcario A J Lab Clin Med; 1972 Sep; 80(3):322-32. PubMed ID: 5055383 [No Abstract] [Full Text] [Related]
18. Transmembrane disposition of the phlorizin binding protein of intestinal brush borders. Klip A; Grinstein S; Semenza G FEBS Lett; 1979 Mar; 99(1):91-6. PubMed ID: 437137 [No Abstract] [Full Text] [Related]