These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4819086)

  • 1. Graphite braid atomizer for atomic absorption and atomic fluorescence spectrometry.
    Montaser A; Goode SR; Crouch SR
    Anal Chem; 1974 Apr; 46(4):599-601. PubMed ID: 4819086
    [No Abstract]   [Full Text] [Related]  

  • 2. The determination of copper in sea water by atomic absorption spectrometry with a graphite atomizer after elution from chitosan.
    Muzzarelli RA; Rocchetti R
    Anal Chim Acta; 1974 Mar; 69(1):35-42. PubMed ID: 4416151
    [No Abstract]   [Full Text] [Related]  

  • 3. Graphite rod atomizer in atomic absorption spectrometry for direct determination of iron in serum.
    Glenn MT; Savory J; Fein SA; Reeves RD; Molnar CJ; Winefordner JD
    Anal Chem; 1973 Jan; 45(1):203-5. PubMed ID: 4682286
    [No Abstract]   [Full Text] [Related]  

  • 4. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer.
    Zhu Z; Liu J; Zhang S; Na X; Zhang X
    Anal Chim Acta; 2008 Jan; 607(2):136-41. PubMed ID: 18190801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of copper in serum with a graphite rod atomizer for atomic absorption spectrophotometry.
    Glenn M; Savory J; Hart L; Glenn T; Winefordner J
    Anal Chim Acta; 1971 Dec; 57(2):263-6. PubMed ID: 5132422
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of bismuth in solid samples by hydride generation atomic fluorescence spectrometry with a dielectric barrier discharge atomizer.
    Xing Z; Wang J; Zhang S; Zhang X
    Talanta; 2009 Nov; 80(1):139-42. PubMed ID: 19782203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.
    Yuzefovsky AI; Lonardo RF; Michel RG
    Anal Chem; 1995 Jul; 67(13):2246-55. PubMed ID: 8694251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of submicrogram amounts of mercury in various matrices by flameless atomic-fluorescence spectrometry.
    Cavalli P; Rossi G
    Analyst; 1976 Apr; 101(1201):272-7. PubMed ID: 1267184
    [No Abstract]   [Full Text] [Related]  

  • 9. Direct analysis of blood, urine, sea water, filter paper, and polyethylene by atomic absorption spectrometry with the "hollow-T" atomizer.
    Robinson JW; Wolcott DK; Rhodes L
    Anal Chim Acta; 1975 Sep; 78(2):285-92. PubMed ID: 1166959
    [No Abstract]   [Full Text] [Related]  

  • 10. [Determination of vanadium in blood by flameless atomic absorption spectrometry using a carbon tube atomizer (author's transl)].
    Ishizaki M; Ueno S; Fujiki M; Yamaguchi S
    Sangyo Igaku; 1978 Jan; 20(1):30-1. PubMed ID: 566807
    [No Abstract]   [Full Text] [Related]  

  • 11. Determination of lead and cadmium in fish and clam tissue by atomic absorption spectrometry with a molybdenum and lanthanum treated pyrolytic graphite atomizer.
    Poldoski JE
    Anal Chem; 1980 Jun; 52(7):1147-51. PubMed ID: 7469023
    [No Abstract]   [Full Text] [Related]  

  • 12. Biological applications of the carbon rod atomizer in atomic absorption spectroscopy. 2. Determination of copper in small samples of tissue.
    Stevens BJ
    Clin Chem; 1972 Nov; 18(11):1379-84. PubMed ID: 4675829
    [No Abstract]   [Full Text] [Related]  

  • 13. [A Zeeman graphite furnace atomic absorption spectrometric method for the determination of trace copper and chromium in drinking water].
    Wang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Aug; 19(4):616-8. PubMed ID: 15818974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of lead in whole blood by graphite furnace atomic absorption spectrophotometry.
    Ealy JA; Bolton NE; McElheny RJ; Morrow RW
    Am Ind Hyg Assoc J; 1974 Sep; 35(9):566-70. PubMed ID: 4412758
    [No Abstract]   [Full Text] [Related]  

  • 15. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.
    Mickadeit FK; Berniolles S; Kemp HR; Tong WG
    Anal Chem; 2004 Mar; 76(6):1788-92. PubMed ID: 15018584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of copper in plasma ultrafiltrate by atomic-absorption spectrometry using carbon furnace atomisation.
    Kamel H; Teape J; Brown DH; Ottaway JM; Smith WE
    Analyst; 1978 Sep; 103(1230):921-7. PubMed ID: 707814
    [No Abstract]   [Full Text] [Related]  

  • 17. Simplified determination of copper, zinc and manganese in plasma and bile by flameless atomic absorption spectrometry.
    Sekiya T; Tanimura H; Hkiasa Y
    Nihon Geka Hokan; 1981 Nov; 50(6):729-39. PubMed ID: 7337504
    [No Abstract]   [Full Text] [Related]  

  • 18. [Determination of zinc and copper concentrations in human serum by atomic absorption spectrophotometry (author's transl)].
    Yang NF; Jiao KS; He GZ; Liu YT; Jiang ZM; Zhu Y; Zeng XJ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1980 Jun; 2(2):136-9. PubMed ID: 6448709
    [No Abstract]   [Full Text] [Related]  

  • 19. [Determination of serum copper and zinc in different chemical forms by graphite furnace atomic absorption spectrometry with ethanol-EDTA precipitation method].
    Zhang Y; Li ZX; Li H; Peng L; Luo HJ; Li WQ; Luo WH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):816-9. PubMed ID: 20496717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of chromium in biological materials by atomic absorption spectrometry using a graphite furnace atomizer.
    Davidson IW; Secrest WL
    Anal Chem; 1972 Sep; 44(13):1808-13. PubMed ID: 4628526
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.