These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 4822053)

  • 1. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Identification of p-amino-L-phenylalanine as a product from the action of arylamine synthetase on chorismic acid.
    Jones A; Vining LC
    Can J Microbiol; 1976 Feb; 22(2):237-44. PubMed ID: 4210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid.
    Larsen PO; Onderka DK; Floss HG
    Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Branch-point enzymes of the shikimic acid pathway.
    Lowe DA; Westlake DW
    Can J Biochem; 1972 Oct; 50(10):1064-73. PubMed ID: 5084351
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.
    Jones A; Westlake DW
    Can J Microbiol; 1974 Nov; 20(11):1599-611. PubMed ID: 4373156
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of chloramphenicol.
    Westlake DW; Vining LC
    Biotechnol Bioeng; 1969 Nov; 11(6):1125-34. PubMed ID: 5365805
    [No Abstract]   [Full Text] [Related]  

  • 8. Biosynthesis of chloramphenicol. Origin and degradation of the aromatic ring.
    O'Neill WP; Nystrom RF; Rinehart KL; Gottlieb D
    Biochemistry; 1973 Nov; 12(23):4775-84. PubMed ID: 4773855
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of chorismate-derived antibiotic production.
    Malik VS
    Adv Appl Microbiol; 1979; 25():75-93. PubMed ID: 121030
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthesis of the antibiotic 2,5-dihydrophenylalanine by Streptomyces arenae.
    Shimada K; Hook DJ; Warner GF; Floss HG
    Biochemistry; 1978 Jul; 17(15):3054-8. PubMed ID: 698184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of bacterial menaquinones (vitamins K 2 ).
    Campbell IM; Robins DJ; Kelsey M; Bentley R
    Biochemistry; 1971 Aug; 10(16):3069-78. PubMed ID: 5001735
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022a.
    Malik VS; Vining LC
    Can J Microbiol; 1972 Feb; 18(2):137-43. PubMed ID: 5018695
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the biosynthesis of mitomycin C by Streptomyces verticillatus.
    Bezanson GS; Vining LC
    Can J Biochem; 1971 Aug; 49(8):911-8. PubMed ID: 5120255
    [No Abstract]   [Full Text] [Related]  

  • 14. The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate.
    Morell H; Clark MJ; Knowles PF; Sprinson DB
    J Biol Chem; 1967 Jan; 242(1):82-90. PubMed ID: 4289188
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthetase.
    Lowe DA; Westlake DW
    Can J Biochem; 1971 Apr; 49(4):448-55. PubMed ID: 5552828
    [No Abstract]   [Full Text] [Related]  

  • 16. Impaired regulation of aromatic amino acid synthesis in a mutant resistant to p-fluorophenylalanine.
    Barker C; Lewis D
    J Gen Microbiol; 1974 Jun; 82(2):337-43. PubMed ID: 4421507
    [No Abstract]   [Full Text] [Related]  

  • 17. Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
    Waltho JA
    J Bacteriol; 1972 Dec; 112(3):1070-5. PubMed ID: 4629651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of chorismic acid and 4-aminobenzoic acid into the 4-hydroxyaniline moiety of N-(gamma-L-glutamyl)-4-hydroxyaniline in Agaricus bisporus.
    Tsuji H; Ogawa T; Bando N; Sasaoka K
    Biochim Biophys Acta; 1985 Jun; 840(2):287-90. PubMed ID: 3873258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of ketomycin.
    Takeda Y; Mak V; Chang CC; Chang CJ; Floss HG
    J Antibiot (Tokyo); 1984 Aug; 37(8):868-75. PubMed ID: 6384167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway.
    Vitayakritsirikul V; Jaemsaeng R; Lohmaneeratana K; Thanapipatsiri A; Daduang R; Chuawong P; Thamchaipenet A
    Antonie Van Leeuwenhoek; 2016 Mar; 109(3):379-88. PubMed ID: 26715388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.