These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4822730)

  • 41. The effects of diphenyleneiodonium and of 2,4-dichlorodiphenyleneiodonium on mitochondrial reactions. Mechanism of the inhibition of oxygen uptake as a consequence of the catalysis of the chloride/hydroxyl-ion exchange.
    Gatley SJ; Sherratt HS
    Biochem J; 1976 Aug; 158(2):317-26. PubMed ID: 10893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transport of phosphate analogues in rat-liver mitochondria.
    Freitag H; Kadenbach B
    Eur J Biochem; 1978 Feb; 83(1):53-7. PubMed ID: 627215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The protein component(s) of the isolated phosphate-transport system of mitochondria.
    Kolbe HV; Mende P; Kadenbach B
    Eur J Biochem; 1982 Nov; 128(1):97-105. PubMed ID: 7173215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier.
    Long R; Salouage I; Berdeaux A; Motterlini R; Morin D
    Biochim Biophys Acta; 2014 Jan; 1837(1):201-9. PubMed ID: 24161358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FURTHER OBSERVATIONS ON THE PRODUCTION OF AMINO ACIDS BY RAT-LIVER MITOCHONDRIA AND OTHER SUBCELLULAR FRACTIONS.
    ALBERTI KG; BARTLEY W
    Biochem J; 1965 Jun; 95(3):641-56. PubMed ID: 14342498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.
    Turrens JF
    Biochem J; 1989 Apr; 259(2):363-8. PubMed ID: 2719653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of the effects of Zn2+ and Cu2+ on the K+ transport in yeast mitochondria. Evidences for the involvement of a Zn(2+)-binding protein in the K+/H+ exchange.
    Manon S; Guérin M
    Biochem Mol Biol Int; 1995 Mar; 35(3):585-93. PubMed ID: 7773193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anion transporters in plant mitochondria.
    Phillips ML; Williams GR
    Plant Physiol; 1973 Apr; 51(4):667-70. PubMed ID: 16658390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of phosphoenolpyruvate from propionate in sheep liver.
    Smith RM; Osborne-White WS
    Biochem J; 1971 Oct; 124(5):867-76. PubMed ID: 4331860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The uptake of oxalate by rat liver and kidney mitochondria.
    Strzelecki T; Menon M
    J Biol Chem; 1986 Sep; 261(26):12197-201. PubMed ID: 3745185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial phosphate transport and the N-ethylmaleimide binding proteins of the inner membrane.
    Wohlrab H; Greaney J
    Biochim Biophys Acta; 1978 Sep; 503(3):425-36. PubMed ID: 687612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactivity of the sulfhydryl groups of soluble succinate dehydrogenase.
    Vinogradov AD; Gavrikova EV; Zuevsky VV
    Eur J Biochem; 1976 Apr; 63(2):365-71. PubMed ID: 4320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Reaction ability and alkylation kinetics of sulfhydride groups of soluble succinate dehydrogenase].
    Gavrikova EV; Zuevskiĭ VV; Vinogradov AD
    Biokhimiia; 1975; 40(6):1193-204. PubMed ID: 2331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The inhibition of pyruvate and Ls(+)-isocitrate oxidation by succinate oxidation in rat liver mitochondria.
    König T; Nicholls DG; Garland PB
    Biochem J; 1969 Sep; 114(3):589-96. PubMed ID: 4309530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the mechanism of phosphate and dicarboxylate transport in mitochondria.
    Kadenbach B; Freitag H; Kolbe H
    FEBS Lett; 1978 May; 89(1):161-4. PubMed ID: 658397
    [No Abstract]   [Full Text] [Related]  

  • 57. Phosphate transport in yeast mitochondria: purification and characterization of a mitoribosomal synthesis dependent proteolipid showing a high affinity for phosphate.
    Guerin M; Napias C
    Biochemistry; 1978 Jun; 17(13):2510-6. PubMed ID: 150287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Riboflavin 5'-phosphate: a potent activator or brain glutaminase.
    Weil-Malherbe H; Beall GD
    J Neurochem; 1970 Jul; 17(7):1101-3. PubMed ID: 5426670
    [No Abstract]   [Full Text] [Related]  

  • 59. Alternative system of succinate oxidation in glyoxysomes of higher plants.
    Igamberdiev AU; Popov VN; Falaleeva MI
    FEBS Lett; 1995 Jul; 367(3):287-90. PubMed ID: 7607325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stimulation of alkaline phosphatase by analogs of inorganic pyrophosphate.
    Kelly SH; Sperow JW; Butler LG
    Biochemistry; 1974 Aug; 13(17):3503-5. PubMed ID: 4367425
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.