These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 482384)
21. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. I. A fluorometric and spectrophotometric study. Strom R; Crifò C; Bozzi A Biophys J; 1973 Jun; 13(6):568-80. PubMed ID: 4736622 [TBL] [Abstract][Full Text] [Related]
22. Incorporation of amphotericin B into large unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol. Madden TD; Janoff AS; Cullis PR Chem Phys Lipids; 1990 Feb; 52(3-4):189-98. PubMed ID: 2340597 [TBL] [Abstract][Full Text] [Related]
23. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. II. Cooperative effects in erythrocyte membranes. Strom R; Crifò C; Santoro AS Biophys J; 1973 Jun; 13(6):581-93. PubMed ID: 4736623 [TBL] [Abstract][Full Text] [Related]
24. Polyene antibiotics. VII. Carbon-13 nuclear magnetic resonance evidence for cyclic hemiketals in the polyene antibiotics amphotericin B, nystatin A1, tetrin A, tetrin B, lucensomycin, and pimaricin1,2. Pandey RC; Rinehart KL J Antibiot (Tokyo); 1976 Oct; 29(10):1035-42. PubMed ID: 1086913 [TBL] [Abstract][Full Text] [Related]
25. Physical studies on phosphonium phosphatidylcholine. A unique [31P]phosphorus nuclear-magnetic-resonance probe for model and biological membranes. Sim E; Cullis PR; Richards RE Biochem J; 1975 Dec; 151(3):555-60. PubMed ID: 1240758 [TBL] [Abstract][Full Text] [Related]
26. Magnetic resonance study of the distribution of 2,2,6,6-tetramethylpiperidine-N-oxyl in phosphatidylcholine bilayers. Sillerud LO; Barnett RE Biochim Biophys Acta; 1977 Mar; 465(3):466-70. PubMed ID: 189814 [TBL] [Abstract][Full Text] [Related]
27. Deuterium magnetic resonance of selectively deuterated cholesteryl esters in phosphatidylcholine vesicles. Gorrissen H; Tulloch AP; Cushley RJ Biochemistry; 1980 Jul; 19(15):3422-9. PubMed ID: 7190833 [TBL] [Abstract][Full Text] [Related]
28. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study. Yeagle PL; Hutton WC; Huang CH; Martin RB Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3477-81. PubMed ID: 1059134 [TBL] [Abstract][Full Text] [Related]
30. Combined effects exerted by amphotericin B and lucensomycin on cation permeability in a unilamellar vesicle system. Capuozzo E; Salvi S; Salerno C; Crifò C Biochimie; 1989 Jan; 71(1):57-61. PubMed ID: 2497798 [TBL] [Abstract][Full Text] [Related]
31. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. van Hoogevest P; de Kruijff B Biochim Biophys Acta; 1978 Aug; 511(3):397-407. PubMed ID: 687620 [TBL] [Abstract][Full Text] [Related]
32. Effects of phenylamide herbicides on the physical properties of phosphatidylcholine membranes. Stidham MA; Siedow JN; McIntosh TJ; Porter NA; Moreland DE Biochim Biophys Acta; 1985 Feb; 812(3):721-30. PubMed ID: 3970904 [TBL] [Abstract][Full Text] [Related]
33. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. Effects of temperature and phospholipid composition. Utsumi H; Suzuki T; Inoue K; Nojima S J Biochem; 1984 Jul; 96(1):97-105. PubMed ID: 6092327 [TBL] [Abstract][Full Text] [Related]
34. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. De Kruijff B; Cullis PR; Radda GK Biochim Biophys Acta; 1976 Jul; 436(4):729-40. PubMed ID: 952917 [TBL] [Abstract][Full Text] [Related]
35. Asymmetric permeability of the membrane of egg phosphatidylcholine-cholesterol vesicles to 2,2,6,6 tetramethyl piperidinyl-l-oxycholine. Setaka M; Ichiki T; Shimizu H J Biochem; 1978 May; 83(5):1299-303. PubMed ID: 207683 [TBL] [Abstract][Full Text] [Related]
36. Phosphatidylcholine liposomes containing cholesterol analogues with side chains of various lengths. Nakamura T; Nishikawa M; Inoue K; Nojima S; Akiyama T; Sankawa U Chem Phys Lipids; 1980 Jan; 26(1):101-10. PubMed ID: 7357682 [TBL] [Abstract][Full Text] [Related]
37. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. Tauskela JS; Thompson M Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841 [TBL] [Abstract][Full Text] [Related]
38. Calorimetric, 13C NMR, and 31P NMR studies on the interaction of some phenothiazine derivatives with dipalmitoyl phosphatidylcholine model membranes. Frenzel J; Arnold K; Nuhn P Biochim Biophys Acta; 1978 Feb; 507(2):185-97. PubMed ID: 580062 [TBL] [Abstract][Full Text] [Related]
39. Proton magnetic resonance relaxation studies on the structure of mixed micelles of Triton X-100 and dimyristoylphosphatidylcholine. Ribeiro AA; Dennis EA Biochemistry; 1975 Aug; 14(17):3746-55. PubMed ID: 1174502 [TBL] [Abstract][Full Text] [Related]
40. The application of nuclear magnetic resonance spectroscopy to the study of natural and model membranes. Podo F Biochimie; 1975; 57(4):461-9. PubMed ID: 1096970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]