These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 4826880)

  • 1. Transmembrane electron transfer in an enzyme-phospholipid complex.
    Imai K; Brodie AF
    Biochem Biophys Res Commun; 1974 Feb; 56(3):822-7. PubMed ID: 4826880
    [No Abstract]   [Full Text] [Related]  

  • 2. Requirement of flavin adenine dinucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium.
    Tobari J
    Biochem Biophys Res Commun; 1964 Feb; 15(1):50-4. PubMed ID: 5835376
    [No Abstract]   [Full Text] [Related]  

  • 3. FAD-dependent malate dehydrogenase from Mycobacterium sp. strain Takeo : a possible role of phospholipid.
    Imai T; Tobari J
    Biochem Biophys Res Commun; 1977 Sep; 78(2):498-505. PubMed ID: 907699
    [No Abstract]   [Full Text] [Related]  

  • 4. MALATE-VITAMIN K REDUCTASE, A PHOSPHOLIPID-REQUIRING ENZYME.
    ASANO A; KANESHIRO T; BRODIE AF
    J Biol Chem; 1965 Feb; 240():895-905. PubMed ID: 14275151
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonheme iron: a functional component of malate-vitamin K reductase.
    Kurup CK; Brodie AF
    Biochem Biophys Res Commun; 1967 Sep; 28(6):862-8. PubMed ID: 6064586
    [No Abstract]   [Full Text] [Related]  

  • 6. FAD-dependent malate dehydrogenase from Mycobacterium smegmatis: activation of the lipid-depleted inactive enzyme by a phospholipid analogue, di (triethyleneglycoltetradecylether) phosphate.
    Imai T; Murata T
    Biochem Int; 1989 Dec; 19(6):1277-86. PubMed ID: 2635863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Utilization of malate by various Mycobacteria. Malate-vitamin K 1 reductase].
    Andrejew A; Orfanelli MT; Desbordes J
    C R Acad Hebd Seances Acad Sci D; 1972 Feb; 274(6):943-6. PubMed ID: 4622884
    [No Abstract]   [Full Text] [Related]  

  • 8. FAD-dependent malate dehydrogenase, a phospholipid-requiring enzyme from Mycobacterium sp. strain Takeo. Purification and some properties.
    Imai T
    Biochim Biophys Acta; 1978 Mar; 523(1):37-46. PubMed ID: 629992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in the pathways of malate oxidation and phosphorylation in different species of Mycobacteria.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Biochim Biophys Acta; 1975 Feb; 376(2):210-8. PubMed ID: 234747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site of action of nonheme iron in the malate (flavine adenine dinucleotide) pathway of Mycobacterium phlei.
    Tyagi AK; Reddy TL; Venkitasubramanian TA
    Can J Microbiol; 1976 Jul; 22(7):1054-7. PubMed ID: 963613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FAD-dependent malate dehydrogenase from Mycobacterium smegmatis: activation of the lipid-depleted enzyme by incorporation into cardiolipin liposome.
    Imai T; Hosoda N; Tadano H; Tobari J
    Biochem Biophys Res Commun; 1985 Nov; 133(1):1-7. PubMed ID: 3000371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzymic mechanism of microbiological dehydration and reduction of the steroid A ring].
    Lestrovaia NN; Bukhar MI; Skriabin GK
    Biokhimiia; 1967; 32(4):741-5. PubMed ID: 4385660
    [No Abstract]   [Full Text] [Related]  

  • 13. Isolation and some properties of reduced diphosphopyridine nucleotide: 2,6-dichlorophenolindophenol soluble reductase from Mycobacterium phlei.
    Zagórski W; Kaniuga Z
    Acta Microbiol Pol; 1967; 16(2):91-9. PubMed ID: 4168405
    [No Abstract]   [Full Text] [Related]  

  • 14. The acceptor specificity of flavins and flavoproteins. II. Free flavins.
    Dixon M
    Biochim Biophys Acta; 1971 Mar; 226(2):259-68. PubMed ID: 4324966
    [No Abstract]   [Full Text] [Related]  

  • 15. Mycobacterium smegmatis malate dehydrogenase: activation of the lipid-depleted enzyme by anionic phospholipids and phosphatidylethanolamine.
    Imai T; Kageyama Y; Tobari J
    Biochim Biophys Acta; 1995 Jan; 1246(2):189-96. PubMed ID: 7819287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofactor requirements of the L-malate dehydrogenase of Pseudomonas ovalis Chester.
    Phizackerley PJ; Francis MJ
    Biochem J; 1966 Nov; 101(2):524-35. PubMed ID: 5966284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the mode of oxidation of pyrazolo(3,4-d)pyrimidine by aldehyde oxidase and xanthine oxidase.
    Johns DG; Spector T; Robins RK
    Biochem Pharmacol; 1969 Oct; 18(10):2371-83. PubMed ID: 5403975
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of the soluble malate-vitamin K reductase and associated phosphorylation.
    Murthy PS; Bogin E; Higashi T; Brodie AF
    J Biol Chem; 1969 Jun; 244(12):3117-24. PubMed ID: 4240025
    [No Abstract]   [Full Text] [Related]  

  • 19. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II.
    Izawa S; Gould JM; Ort DR; Felker P; Good NE
    Biochim Biophys Acta; 1973 Apr; 305(1):119-28. PubMed ID: 4719595
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.