These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 4828312)
1. Glucose inhibition of the transport and phosphoenolpyruvate-dependent phosphorylation of galactose and fructose in Vibrio cholerae. Bag J J Bacteriol; 1974 May; 118(2):764-7. PubMed ID: 4828312 [TBL] [Abstract][Full Text] [Related]
2. Diauxic growth of Vibrio cholerae: Effect of glucose on the transport & phosphoenolpyravate dependent phosphorylation of galactose & fructose. Bag J Indian J Biochem Biophys; 1974 Jun; 11(2):148-51. PubMed ID: 4448465 [No Abstract] [Full Text] [Related]
3. Mechanisms of 'inducer exclusion' by glucose. Kornberg H; Watts PD; Brown K FEBS Lett; 1980 Aug; 117 Suppl():K28-36. PubMed ID: 6252047 [No Abstract] [Full Text] [Related]
4. Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase. Delobbe A; Chalumeau H; Claverie JM; Gay P Eur J Biochem; 1976 Jul; 66(3):485-91. PubMed ID: 821752 [TBL] [Abstract][Full Text] [Related]
5. Glucose transport in Brucella abortus. Rest RF; Robertson DC J Bacteriol; 1974 Apr; 118(1):250-8. PubMed ID: 4206873 [TBL] [Abstract][Full Text] [Related]
6. Source of energy for the Escherichia coli galactose transport systems induced by galactose. Wilson DB J Bacteriol; 1974 Nov; 120(2):866-71. PubMed ID: 4281777 [TBL] [Abstract][Full Text] [Related]
7. Evidence for vectorial phosphorylation of D-fructose by intact cells of Aerobacter aerogenes. Kelker NE; Anderson RL J Bacteriol; 1972 Dec; 112(3):1441-3. PubMed ID: 4640508 [TBL] [Abstract][Full Text] [Related]
8. Requirement for a functional respiration-coupled D-fructose transport system for induction of phosphoenolypyruvate:D-fructose phosphotransferase activity. Wolfson EB; Krulwich TA Proc Natl Acad Sci U S A; 1974 May; 71(5):1739-42. PubMed ID: 4525460 [TBL] [Abstract][Full Text] [Related]
9. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
10. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli]. Golub EI; Garaev MM Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077 [TBL] [Abstract][Full Text] [Related]
11. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
12. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae. Nevado J; Navarro MA; Heredia CF Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600 [TBL] [Abstract][Full Text] [Related]
13. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12. Burd GI; Bol'shakova TN; Gershanovich VN Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445 [No Abstract] [Full Text] [Related]
14. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system. Tanaka S; Lin EC Proc Natl Acad Sci U S A; 1967 Apr; 57(4):913-9. PubMed ID: 5231354 [No Abstract] [Full Text] [Related]
15. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae. Heredia CF Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297 [TBL] [Abstract][Full Text] [Related]
16. Enrichment of mutants lacking the phosphoenolpyruvate-dependent phosphotransferase system of Vibrio parahaemolyticus by screening with methyl-alpha-D-glucoside. Matsumoto K; Iuchi S; Fujisawa A; Tanaka S J Bacteriol; 1974 Aug; 119(2):632-4. PubMed ID: 4851869 [TBL] [Abstract][Full Text] [Related]
17. The influence of nickelous ions on carbohydrate transport in yeast cells. van Steveninck J Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535 [No Abstract] [Full Text] [Related]
19. Transport of sugars and amino acids in bacteria. V. Further studies in the galactose transport system in Escherichia coli. Anraku Y J Biochem; 1971 Nov; 70(5):855-6. PubMed ID: 4947361 [No Abstract] [Full Text] [Related]
20. Pathways of D-fructose transport in Arthrobacter pyridinolis. Wolfson EB; Sobel ME; Blanco R; Krulwich TA Arch Biochem Biophys; 1974 Feb; 160(2):440-4. PubMed ID: 4831624 [No Abstract] [Full Text] [Related] [Next] [New Search]