These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4828409)

  • 1. Oxidation of palmityl-CoA to CO2 by normal and atherosclerotic aortic mitochondria.
    Hashimoto S; Dayton S
    Life Sci; 1974 Mar; 14(5):945-55. PubMed ID: 4828409
    [No Abstract]   [Full Text] [Related]  

  • 2. Uptake, oxidation, and esterification of free fatty acids in normal and atherosclerotic rabbit aorta.
    Morrison ES; Scott RF; Kroms M; Frick J
    Biochem Med; 1974 Oct; 11(2):153-64. PubMed ID: 4458662
    [No Abstract]   [Full Text] [Related]  

  • 3. The oxidation of fatty acids by rabbit reticulocytes and their isolated mitochondria.
    Schultze M; Rost J; Augustin W; Gellerich F; Rapoport S
    Eur J Biochem; 1972 May; 27(1):43-7. PubMed ID: 5049055
    [No Abstract]   [Full Text] [Related]  

  • 4. On rate-controlling factors of long chain fatty acid oxidation.
    Pande SV
    J Biol Chem; 1971 Sep; 246(17):5384-90. PubMed ID: 5094674
    [No Abstract]   [Full Text] [Related]  

  • 5. Palmityl-CoA: carnitine O-palmityltransferase in the mitochondrial oxidation of palmityl-CoA.
    Bremer J; Norum KR
    Eur J Biochem; 1967 Jun; 1(4):427-33. PubMed ID: 6061961
    [No Abstract]   [Full Text] [Related]  

  • 6. Acetate, a major end product of fatty-acid oxidation in hamster brown-adipose-tissue mitochondria.
    Bernson SM; Nicholls DG
    Eur J Biochem; 1974 Sep; 47(3):517-25. PubMed ID: 4434994
    [No Abstract]   [Full Text] [Related]  

  • 7. Esterification of cholesterol by homogenates of atherosclerotic and normal aortas.
    Hashimoto S; Dayton S; Alfin-Slater RB
    Life Sci II; 1973 Jan; 12(1):1-12. PubMed ID: 4709307
    [No Abstract]   [Full Text] [Related]  

  • 8. Palmitic acid-1- 14 C oxidation by skeletal muscle mitochondria of dystrophic mice.
    Lin CH; Hudson AJ; Strickland KP
    Can J Biochem; 1970 May; 48(5):566-72. PubMed ID: 5525011
    [No Abstract]   [Full Text] [Related]  

  • 9. Cholesterol ester formation in aortas of cholesterol-fed rabbits.
    Newman HA; Gray GW; Zilversmit DB
    J Atheroscler Res; 1968; 8(5):745-54. PubMed ID: 5688372
    [No Abstract]   [Full Text] [Related]  

  • 10. 11 -Hydroxylation and carnitine-dependent fatty acid oxidation in adrenal mitochondria.
    Harano Y; Kowal J
    Arch Biochem Biophys; 1972 Nov; 153(1):68-73. PubMed ID: 4650624
    [No Abstract]   [Full Text] [Related]  

  • 11. Acetyl-1- 14 C-l-carnitine oxidation, carnitine acetyltransferase activity, and CoA content in skeletal muscle mitochondria from normal and dystrophic mice (strain 129).
    Jato-Rodriguez JJ; Lin CH; Hudson AJ; Strickland KP
    Can J Biochem; 1972 Jul; 50(7):749-54. PubMed ID: 5050932
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of the cholesterol-esterifying activity in normal and atherosclerotic rabbit aortas.
    Hashimoto S; Dayton S; Alfin-Slater RB; Bui PT; Baker N; Wilson L
    Circ Res; 1974 Feb; 34(2):176-83. PubMed ID: 4811072
    [No Abstract]   [Full Text] [Related]  

  • 13. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M; Berge R
    Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of inorganic phosphate exchange in brown adipose tissue mitochondria.
    Christiansen EN; Wojtczak L
    Comp Biochem Physiol B; 1974 Dec; 49(4):579-92. PubMed ID: 4434731
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of fatty acid oxidation in rat brain mitochondria: inhibition of high rates of palmitate oxidation by ADP.
    Kawamura N
    Arch Biochem Biophys; 1988 Aug; 264(2):546-52. PubMed ID: 2969699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol ester hydrolysis in aortic tissue.
    Brecher P; Kessler M; Clifford C; Chobanian AV
    Biochim Biophys Acta; 1973 Sep; 316(3):386-94. PubMed ID: 4201306
    [No Abstract]   [Full Text] [Related]  

  • 17. Palmitate oxidation by rat skeletal muscle mitochondria. Comparison of polarographic and radiochemical experiments.
    van Hinsbergh VW; Veerkamp JH; van Moerkerk HT
    Arch Biochem Biophys; 1978 Oct; 190(2):762-71. PubMed ID: 718176
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes.
    Fritz IB; Marquis NR
    Proc Natl Acad Sci U S A; 1965 Oct; 54(4):1226-33. PubMed ID: 5219827
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism of inhibition by uncouples of succinate oxidation in isolated mitochondria.
    Papa S; Lofrumento NE; Paradies G; Quagliariello E
    Biochim Biophys Acta; 1969 May; 180(1):35-44. PubMed ID: 4182397
    [No Abstract]   [Full Text] [Related]  

  • 20. Production of 3-enoyl-CoA esters from palmitate by rat liver mitochondria.
    Eaton S; Turnbull DM; Bartlett K
    Biochem Soc Trans; 1994 May; 22(2):119S. PubMed ID: 7958190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.