These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4829903)

  • 1. Contribution of airway collapse to supramaximal expiratory flows.
    Knudson RJ; Mead J; Knudson DE
    J Appl Physiol; 1974 Jun; 36(6):653-67. PubMed ID: 4829903
    [No Abstract]   [Full Text] [Related]  

  • 2. Time dependence of flow-volume curves.
    Green M; Mead J
    J Appl Physiol; 1974 Dec; 37(6):793-7. PubMed ID: 4436210
    [No Abstract]   [Full Text] [Related]  

  • 3. Pulmonary mechanics in infants. Methodological aspects.
    Ahlström H; Jonson B
    Scand J Respir Dis; 1974; 55(2):129-40. PubMed ID: 4853962
    [No Abstract]   [Full Text] [Related]  

  • 4. II. Theoretical considerations and methods.
    Hjalmarson O; Olsson T; Riha M
    Acta Paediatr Scand Suppl; 1974; (247):6-25. PubMed ID: 4533217
    [No Abstract]   [Full Text] [Related]  

  • 5. Fundamental frequency analysis of pulmonary mechanical resistance and compliance.
    Ostrander LE; Chester EH; Franck JB
    J Appl Physiol; 1973 Oct; 35(4):526-37. PubMed ID: 4743012
    [No Abstract]   [Full Text] [Related]  

  • 6. Development of the measurement of respiratory resistance.
    McDermott M
    Proc R Soc Med; 1971 Dec; 64(12):1235-7. PubMed ID: 5131270
    [No Abstract]   [Full Text] [Related]  

  • 7. Action of isoprenaline on the mechanical properties of lungs and airways in healthy people and patients with obstructive lung diseases.
    Bobbaers H; Stanescu DC; Demedts SM; Clément J; Pardaens J; van de Woestijne KP
    Bull Eur Physiopathol Respir; 1976; 12(4):515-31. PubMed ID: 1087891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors determining the shape of maximum expiratory flow-volume curves in childhood asthma.
    Landau LI; Hill DJ; Phelan PD
    Aust N Z J Med; 1973 Dec; 3(6):557-64. PubMed ID: 4522692
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of parenchymal and airway disease in limiting forced expired flows in chronic obstructive pulmonary disease.
    Boushy SF; North LB; Fagan TJ
    Am Rev Respir Dis; 1973 Oct; 108(4):870-8. PubMed ID: 4741882
    [No Abstract]   [Full Text] [Related]  

  • 10. Validity of simple physical models in interpreting maximal expiratory flow-volume curves.
    Clément J; Van de Woestijne KP
    Respir Physiol; 1972 May; 15(1):70-86. PubMed ID: 5056755
    [No Abstract]   [Full Text] [Related]  

  • 11. Loop formation in alveolar pressure-flow graphs and frequency dependence of compliance: a theoretical study.
    van de Woestijne KP; Demedts M; Bobbaers H
    Bull Physiopathol Respir (Nancy); 1970; 6(4):893-904. PubMed ID: 5522028
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of nasal obstruction upon the mechanics of the lung in the dog.
    Onishi T; Ogura JH; Nelson JR
    Laryngoscope; 1972 Apr; 82(4):712-36. PubMed ID: 5023217
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of acute exposure to CO 2 on lung mechanics in normal man.
    Rodarte JR; Hyatt RE
    Respir Physiol; 1973 Mar; 17(2):135-45. PubMed ID: 4689451
    [No Abstract]   [Full Text] [Related]  

  • 14. Alveolar pressure response to "top-hat" gas flow or pressure waves in artificial ventilation.
    Baker AB; Wilson AM; Hahn CE
    Respir Physiol; 1974 Dec; 22(3):217-25. PubMed ID: 4445603
    [No Abstract]   [Full Text] [Related]  

  • 15. Interrelation between alterations in pulmonary mechanics and hemodynamics in acute myocardial infarction.
    Interiano B; Hyde RW; Hodges M; Yu PN
    J Clin Invest; 1973 Aug; 52(8):1994-2006. PubMed ID: 4719674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventilatory mechanics in patients with bronchiectasis starting in childhood.
    Landau LI; Phelan PD; Williams HE
    Thorax; 1974 May; 29(3):304-12. PubMed ID: 4855384
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of the speed of expiration on the magnitude of the total resistance (Rt) assessed by means of a whole-body plethysmograph.
    Felkel H; Jirina M; Adamec M; Feuereisl R
    Czech Med; 1983; 6(2):86-90. PubMed ID: 6409566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of expiratory airflow limitation in chronic obstructive pulmonary disease associated with 1 -antitrypsin deficiency.
    Black LF; Hyatt RE; Stubbs SE
    Am Rev Respir Dis; 1972 Jun; 105(6):891-9. PubMed ID: 5032709
    [No Abstract]   [Full Text] [Related]  

  • 19. A method for studies of airway closure in relation to lung volume and transpulmonary pressure at a regulated flow rate.
    Jansson L; Jonson B
    Scand J Respir Dis Suppl; 1974; 85():228-31. PubMed ID: 4534912
    [No Abstract]   [Full Text] [Related]  

  • 20. Plethysmography and the non-uniform lung--the measurement of the instantaneous energy-based airway resistance--a new concept.
    Imberger H
    Z Erkr Atmungsorgane; 1986; 166(1):30-8. PubMed ID: 3953110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.