These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 4829916)

  • 1. Effects of simulated weightlessness on responses of untrained men to +Gz acceleration.
    Jacobson LB; Hyatt KH; Sandler H
    J Appl Physiol; 1974 Jun; 36(6):745-52. PubMed ID: 4829916
    [No Abstract]   [Full Text] [Related]  

  • 2. Man at high sustained +Gz acceleration: a review.
    Burton RR; Leverett SD; Michaelson ED
    Aerosp Med; 1974 Oct; 45(10):1115-36. PubMed ID: 4611181
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of head-down bed rest & microgravity on renal fluid excretion.
    Norsk P; Christensen NJ; Vorobiev D; Suzuki Y; Drummer C; Heer M
    J Gravit Physiol; 1998 Jul; 5(1):P81-4. PubMed ID: 11542375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of horizontal body casting on blood volume, drug responsiveness, and +Gz tolerance in the Rhesus monkey.
    Dickey DT; Billman GE; Teoh K; Sandler H; Stone HL
    Aviat Space Environ Med; 1982 Feb; 53(2):142-6. PubMed ID: 7059330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weightlessness: a matter of gravity.
    Page N
    N Engl J Med; 1977 Jul; 297(1):32-7. PubMed ID: 865551
    [No Abstract]   [Full Text] [Related]  

  • 6. Acute hemodynamic responses to weightlessness in humans.
    Lathers CM; Charles JB; Elton KF; Holt TA; Mukai C; Bennett BS; Bungo MW
    J Clin Pharmacol; 1989 Jul; 29(7):615-27. PubMed ID: 2760255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logistic risk model for the unique effects of inherent aerobic capacity on +Gz tolerance before and after simulated weightlessness.
    Ludwig DA; Convertino VA; Goldwater DJ; Sandler H
    Aviat Space Environ Med; 1987 Nov; 58(11):1057-61. PubMed ID: 3689269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VISION AND UNUSUAL GRAVITATIONAL FORCES.
    WHITE WJ; MONTY RA
    Hum Factors; 1963 Jun; 5():239-63. PubMed ID: 14061923
    [No Abstract]   [Full Text] [Related]  

  • 9. Water and energy dietary requirements and endocrinology of human space flight.
    Lane HW; Feeback DL
    Nutrition; 2002 Oct; 18(10):820-8. PubMed ID: 12361773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of changes in fluid-electrolyte metabolism in manned space flights.
    Grigoriev AI
    Aviat Space Environ Med; 1983 Apr; 54(4):318-23. PubMed ID: 6847568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Tolerance of +G2 gravitation overload in persons aged 41-58 years].
    Luk'ianiuk VIu
    Kosm Biol Aviakosm Med; 1984; 18(5):18-23. PubMed ID: 6513467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocrine, renal, and circulatory influences on fluid and electrolyte homeostasis during weightlessness: a joint Russian-U.S. project.
    Grigoriev AI; Huntoon CL; Morukov BV; Lane HW; Larina IM; Smith SM
    J Gravit Physiol; 1996 Sep; 3(2):83-6. PubMed ID: 11540295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value of exercise at one-half earth gravity in preventing the deconditioning effects of simulated weightlessness.
    Hoche J; Graybiel A
    Aerosp Med; 1974 Apr; 45(4):386-92. PubMed ID: 4362556
    [No Abstract]   [Full Text] [Related]  

  • 14. [Interrelationship between pulse filling of earlobe vessels and cardiac extrasystole during "head--foot" loading following exposure to simulated weightlessness].
    Vil'-Vil'iams
    Kosm Biol Aviakosm Med; 1980; 14(6):57-60. PubMed ID: 6160289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOMENTS OF INERTIA AND CENTERS OF GRAVITY OF THE LIVING HUMAN BODY ENCUMBERED BY A FULL-PRESSURE SUIT. AMRL-TR-64-110.
    DUBOIS J; SANTSCHI WR; WALTON DM; SCOTT CO; MAZY FW
    AMRL TR; 1964 Nov; ():1-54. PubMed ID: 14262985
    [No Abstract]   [Full Text] [Related]  

  • 16. Feasibility of real-time 3D echocardiography in weightlessness during parabolic flight.
    Caiani EG; Sugeng L; Weinert L; Husson S; Bailliart O; Capderou A; Lang RM; Vaida P
    J Gravit Physiol; 2004 Jul; 11(2):P235-6. PubMed ID: 16240526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Energy-metabolism enzymes during combined exposure of the body to simulated weightlessness and gravitational overloads].
    Vetrova EG; Drozdova TE; Tigranian RA; Shul'zhenko EB
    Kosm Biol Aviakosm Med; 1981; 15(5):34-8. PubMed ID: 7289561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EFFECTS OF GRAVITY ON BODY FUNCTIONS AND PROBLEMS OF SPACE FLIGHT. NASA TT F-275.
    ISAKOV PK; YUGANOV YM; KASYAN II
    NASA Contract Rep NASA CR; 1964 Nov; ():1-5. PubMed ID: 14241463
    [No Abstract]   [Full Text] [Related]  

  • 19. Estimates of fluid and energy balances of Apollo 17.
    Johnson PC; Leach CS; Rambaut PC
    Aerosp Med; 1973 Nov; 44(11):1227-30. PubMed ID: 4761856
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of microgravity on interstitial muscle receptors affecting heart rate and blood pressure during static exercise.
    Essfeld D; Baum K; Hoffmann U; Stegemann J
    Physiologist; 1993 Feb; 36(1 Suppl):S131-4. PubMed ID: 11538511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.