These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4829939)

  • 1. Ab initio calculations on large molecules using molecular fragments. Structural correlations between natural substrate moieties and some antibiotic inhibitors of peptidyl transferase.
    Cheney BV
    J Med Chem; 1974 Jun; 17(6):590-9. PubMed ID: 4829939
    [No Abstract]   [Full Text] [Related]  

  • 2. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites.
    Fernandez-Munoz R; Monro RE; Torres-Pinedo R; Vazquez D
    Eur J Biochem; 1971 Nov; 23(1):185-93. PubMed ID: 4942548
    [No Abstract]   [Full Text] [Related]  

  • 3. Ab initio calculations on large molecules using molecular fragments. Lincomycin model studies.
    Shipman LL; Christoffersen RE
    J Med Chem; 1974 Jun; 17(6):583-90. PubMed ID: 4829938
    [No Abstract]   [Full Text] [Related]  

  • 4. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):539-47. PubMed ID: 323015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiotic mechanisms.
    Hash JH
    Annu Rev Pharmacol; 1972; 12():35-56. PubMed ID: 4114184
    [No Abstract]   [Full Text] [Related]  

  • 6. Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes.
    Gu Z; Harrod R; Rogers EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5612-6. PubMed ID: 7515506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ribosomal peptidyl-transferase inhibitors is antagonized by elongation factor G with GTP.
    Spirin AS; Asatryan LS
    FEBS Lett; 1976 Nov; 70(1):101-4. PubMed ID: 791676
    [No Abstract]   [Full Text] [Related]  

  • 8. Hygromycin A, a novel inhibitor of ribosomal peptidyltransferase.
    Guerrero MD; Modolell J
    Eur J Biochem; 1980 Jun; 107(2):409-14. PubMed ID: 6156832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical approach to structure-activity relationships of chloramphenicol and congeners.
    Höltje HD; Kier LB
    J Med Chem; 1974 Aug; 17(8):814-9. PubMed ID: 4845374
    [No Abstract]   [Full Text] [Related]  

  • 10. Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.
    Gu Z; Rogers EJ; Lovett PS
    J Bacteriol; 1993 Sep; 175(17):5309-13. PubMed ID: 7690023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photochemical inactivation of peptidyl transferase activity.
    Wan KK; Zahid ND; Baxter RM
    Eur J Biochem; 1975 Oct; 58(2):397-402. PubMed ID: 241639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New aspects of the kinetics of inhibition by lincomycin of peptide bond formation.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1994 Nov; 46(5):1009-14. PubMed ID: 7969063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B.
    Cerná J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Jun; 240(1):109-21. PubMed ID: 4940152
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of spermine on the binding of erythromycin to Escherichia coli ribosomes and the peptidyl-transfer reaction.
    Teraoka H; Tanaka K
    Eur J Biochem; 1973 Mar; 33(3):578-83. PubMed ID: 4571502
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural and functional prerequisites for ribosomal nascent peptide acceptors: attempts to decipher the nature of the ribosome's catalysis of peptide bond formation.
    Michel BY; Krishnakumar KS; Johansson M; Ehrenberg M; Strazewski P
    Nucleic Acids Symp Ser (Oxf); 2008; (52):33-4. PubMed ID: 18776239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mode of action of griseoviridin at the ribosome level.
    Barbacid M; Contreras A; Vazquez D
    Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ribosomes and antibiotics. II. Mechanism of action of therapeutically used antibiotics on ribosomes].
    Delaunay J; Schapira G
    Nouv Presse Med; 1974 Oct; 3(36):2329-33. PubMed ID: 4456296
    [No Abstract]   [Full Text] [Related]  

  • 18. Ab initio calculations on large molecules using molecular fragments. Model peptide studies.
    Shipman LL; Christoffersen RE
    J Am Chem Soc; 1973 Mar; 95(5):1408-16. PubMed ID: 4689322
    [No Abstract]   [Full Text] [Related]  

  • 19. Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T 1 .
    Cerná J; Rychlík I; Jonák J
    Eur J Biochem; 1973 May; 34(3):551-6. PubMed ID: 4123724
    [No Abstract]   [Full Text] [Related]  

  • 20. The comparative study on the effects of chloramphenicol, erythromycin and lincomycin on polylysine synthesis in an Escherichia coli cell-free system.
    Teraoka H; Tanaka K; Tamaki M
    Biochim Biophys Acta; 1969 Feb; 174(2):776-8. PubMed ID: 4887382
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.