These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 483156)

  • 1. The standardization of experimental impact injury to the spinal cord.
    Hung TK; Lin HS; Albin MS; Bunegin L; Jannetta PJ
    Surg Neurol; 1979 Jun; 11(6):470-7. PubMed ID: 483156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical responses to open experimental spinal cord injury.
    Hung TK; Albin MS; Brown TD; Bunegin L; Albin R; Jannetta PJ
    Surg Neurol; 1975 Aug; 4(2):271-6. PubMed ID: 1162604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Standardized" spinal cord trauma: biomechanical parameters and lesion volume.
    Dohrmann GJ; Panjabi MM
    Surg Neurol; 1976 Nov; 6(5):263-7. PubMed ID: 996723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spinal cord evoked potential in experimental spinal cord injury--the changes in spinal cord evoked potential following impact injury, and effect of mannitol administration on acute experimental spinal cord injury].
    Isu T
    Hokkaido Igaku Zasshi; 1990 Mar; 65(2):142-51. PubMed ID: 2114347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1989 Jul; 17(7):629-34. PubMed ID: 2812263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of impounder contact area on experimental spinal cord injury.
    Gerber AM; Corrie WS
    J Neurosurg; 1979 Oct; 51(4):539-42. PubMed ID: 479936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen.
    Koozekanani SH; Vise WM; Hashemi RM; McGhee RB
    J Neurosurg; 1976 Apr; 44(4):429-34. PubMed ID: 1255233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Animal model of acute spinal cord injury in rats].
    Xu XQ; Xiao D; Ju JH
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jan; 17(1):22-5. PubMed ID: 12916302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental models for spinal cord injury research: physical and physiological considerations.
    Anderson TE; Stokes BT
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S135-42. PubMed ID: 1588604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of the thoracic spinal cord and thorax in experimentally produced trauma.
    Dohrman GJ; Panjabi MM; Dicker DB
    Surg Forum; 1977; 28():448-50. PubMed ID: 617499
    [No Abstract]   [Full Text] [Related]  

  • 12. Analysis and measurement of some sources of variability in experimental spinal cord trauma.
    Molt JT; Nelson LR; Poulos DA; Bourke RS
    J Neurosurg; 1979 Jun; 50(6):784-91. PubMed ID: 438880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthes Award for Resident Research on Spinal Cord and Spinal Column Injury: granulocyte macrophage colony stimulating factor (GM-CSF) prevents apoptosis and improves functional outcome in experimental spinal cord contusion injury.
    Ha Y; Park HS; Park CW; Yoon SH; Park SR; Hyun DK; Kim EY; Park HC
    Clin Neurosurg; 2005; 52():341-7. PubMed ID: 16626091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental paraplegia].
    Benezech J; Fuentes JM; Gros PC
    Neurochirurgie; 1986; 32(4):350-5. PubMed ID: 3108686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of mannitol administration and myelotomy on acute experimental spinal cord injury: investigation by spinal cord evoked potential].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1990 Mar; 18(3):267-72. PubMed ID: 2113634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of quantitating injury inflicted in acute spinal cord studies.
    Daniell HB; Francis WW; Lee WA; Ducker TB
    Paraplegia; 1975 Nov; 13(3):137-42. PubMed ID: 813173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An apparatus for quantitating experimental spinal cord trauma.
    Dohrmann GJ; Panjabi MM; Wagner FC
    Surg Neurol; 1976 May; 5(5):315-8. PubMed ID: 1265651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endorphins in experimental spinal injury: therapeutic effect of naloxone.
    Faden AI; Jacobs TP; Mougey E; Holaday JW
    Ann Neurol; 1981 Oct; 10(4):326-32. PubMed ID: 6274252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of antifibrinolytic therapy in experimental spinal cord trauma.
    Brodner RA; Vangilder JC; Collins WF
    J Trauma; 1977 Jan; 17(1):48-54. PubMed ID: 833905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of cerebrospinal fluid serotonin and altered spinal cord blood flow in experimental trauma.
    Brodner RA; Dohrmann GJ; Roth RH; Rubin RA
    Surg Neurol; 1980 May; 13(5):337-43. PubMed ID: 7384998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.