These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 4831639)

  • 1. Peptide antibiotic-oligonucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin D and d-ApTpGpCpApT in aqueous solution.
    Patel DJ
    Biochemistry; 1974 May; 13(11):2396-402. PubMed ID: 4831639
    [No Abstract]   [Full Text] [Related]  

  • 2. Peptide antibiotic-dinucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin D and d-pGpC in aqueous solution.
    Patel DJ
    Biochemistry; 1974 May; 13(11):2388-95. PubMed ID: 4831638
    [No Abstract]   [Full Text] [Related]  

  • 3. [Binding of actinomycin C 3 to mono, di, and oligonucleotides].
    Schara R; Müller W
    Eur J Biochem; 1972 Sep; 29(2):210-6. PubMed ID: 4117106
    [No Abstract]   [Full Text] [Related]  

  • 4. Proton and phosphorus NMR studies of d-CpG(pCpG)n duplexes in solution. Helix-coil transition and complex formation with actinomycin-D.
    Patel DJ
    Biopolymers; 1976 Mar; 15(3):533-58. PubMed ID: 1252592
    [No Abstract]   [Full Text] [Related]  

  • 5. Peptide antibiotic-nucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin d and deoxyguanosine 5'-monophosphate in aqueous solution.
    Patel DJ
    Biochemistry; 1974 Mar; 13(7):1476-82. PubMed ID: 4819760
    [No Abstract]   [Full Text] [Related]  

  • 6. Pools of deoxyribonucleoside triphosphates in the mitotic cycle of Physarum.
    Bersier D; Braun R
    Biochim Biophys Acta; 1974 Apr; 340(4):463-71. PubMed ID: 4857593
    [No Abstract]   [Full Text] [Related]  

  • 7. Echinomycin: a bifunctional intercalating antibiotic.
    Waring MJ; Wakelin LP
    Nature; 1974 Dec; 252(5485):653-7. PubMed ID: 4437614
    [No Abstract]   [Full Text] [Related]  

  • 8. On the role of deoxyribonucleic acid polymerase in determining mutation rates. Characterization of the defect in the T4 deoxyribonucleic acid polymerase caused by the ts L88 mutation.
    Hershfield MS
    J Biol Chem; 1973 Feb; 248(4):1417-23. PubMed ID: 4568816
    [No Abstract]   [Full Text] [Related]  

  • 9. Proton magnetic resonance studies of actinomycin D complexes with mixtures of nucleotides as models for the binding of the drug to DNA.
    Krugh TR; Mooberry ES; Chiao YC
    Biochemistry; 1977 Feb; 16(4):740-7. PubMed ID: 836812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actinomycin D-mononucleotide interactions as studied by proton magnetic resonance.
    Krugh TR; Neely JW
    Biochemistry; 1973 Apr; 12(9):1775-82. PubMed ID: 4699237
    [No Abstract]   [Full Text] [Related]  

  • 11. Nuclear magnetic resonance study of hydrogen-bonded ring protons in Watson-Crick base pairs.
    Crothers DM; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2899-901. PubMed ID: 4517943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of the structure and stability of the 1 : 2 actinomycin D-d-pG-C complex in aqueous solution.
    Patel DJ
    Biochim Biophys Acta; 1976 Aug; 442(1):98-108. PubMed ID: 953004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyribonucleoside triphosphate pools in synchronized and drug-inhibited L 929 cells.
    Adams RL; Berryman S; Thomson A
    Biochim Biophys Acta; 1971 Jul; 240(4):455-62. PubMed ID: 5166306
    [No Abstract]   [Full Text] [Related]  

  • 14. Proton nuclear magnetic resonance investigations and ring current calculations of guanine N-1 and thymine N-3 hydrogen-bonded protons in double-helical deoxyribonucleotides in aqueous solution.
    Patel DJ; Tonelli AE
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1945-8. PubMed ID: 4525304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in Chinese hamster ovary cells.
    Skoog L; Bjursell G
    J Biol Chem; 1974 Oct; 249(20):6434-8. PubMed ID: 4472692
    [No Abstract]   [Full Text] [Related]  

  • 16. A proton magnetic resonance study of single-stranded and double-helical deoxyribooligonucleotides.
    Cross AD; Crothers DM
    Biochemistry; 1971 Oct; 10(22):4015-23. PubMed ID: 5161029
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphorus-31 and fluorine-19 nuclear magnetic resonance of gene 5 protein-oligonucleotide complexes.
    O'Connor TP; Coleman JE
    Biochemistry; 1982 Mar; 21(5):848-54. PubMed ID: 6978734
    [No Abstract]   [Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of hydrogen bonded complexes of oligonucleotides in aqueous solution. I. pdG-dC and pdG-dT.
    Krugh TR; Young MA
    Biochem Biophys Res Commun; 1975 Feb; 62(4):1025-31. PubMed ID: 1120083
    [No Abstract]   [Full Text] [Related]  

  • 19. Further studies on the properties of oligonucleotide cellulose columns.
    Astell CR; Doel MT; Jahnke PA; Smith M
    Biochemistry; 1973 Dec; 12(25):5068-74. PubMed ID: 4792294
    [No Abstract]   [Full Text] [Related]  

  • 20. A procedure for the measurement of intracellular deoxyribonucleoside triphosphate pools by thin layer chromatography.
    Yegian CD
    Anal Biochem; 1974 Mar; 58(1):231-7. PubMed ID: 4596572
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.