BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 4831708)

  • 1. Permissive effect of testosterone on dietary adaptation of jejunal pyruvate kinase in hypogonadal males.
    Lufkin EG; Stifel FB; Teplick RS; Herman RH
    J Clin Endocrinol Metab; 1974 Jun; 38(6):1130-3. PubMed ID: 4831708
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of testosterone on jejunal pyruvate kinase activities in normal and hypogonadal males.
    Lufkin EG; Stifel FB; Herman RH; Rosensweig NS
    J Clin Endocrinol Metab; 1972 Mar; 34(3):586-91. PubMed ID: 5011262
    [No Abstract]   [Full Text] [Related]  

  • 3. Dietary regulation of glycolytic enzymes. VI. Effect of dietary sugars and oral folic acid on human jejunal pyruvate kinase, phosphofructokinase and fructosediphosphatase activities.
    Rosensweig NS; Herman RH; Stifel FB
    Biochim Biophys Acta; 1970 Jun; 208(3):373-80. PubMed ID: 4319151
    [No Abstract]   [Full Text] [Related]  

  • 4. Dietary regulation of glycolytic enzymes. 8. Dose and time response of rat jejunal enzymes to oral sex hormones.
    Stifel FB; Herman RH; Rosensweig NS
    Biochim Biophys Acta; 1970 Jun; 208(3):387-93. PubMed ID: 4319152
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of triiodothyronine on human jejunal glycolytic enzymes.
    Lufkin EG; Taunton OD; Stifel FB; Hofeldt FD; Wrensch MR; Hagler L; Herman RH
    Proc Soc Exp Biol Med; 1975 Nov; 150(2):410-3. PubMed ID: 174132
    [No Abstract]   [Full Text] [Related]  

  • 6. Dietary regulation of glycolytic enzymes. XI. Effect of inhibitors of protein synthesis on the adaptation of certain jejunal glycolytic and folate-metabolizing enzymes to diet and sex steroids.
    Stifel FB; Herman RH; Rosensweig NS
    Biochim Biophys Acta; 1971 Jun; 237(3):484-9. PubMed ID: 4330268
    [No Abstract]   [Full Text] [Related]  

  • 7. Improvement in jejunal enzyme adaptation in obese adult-onset diabetic patients following a 30-day fast.
    Stifel FB; Lufkin EG; Hagler L; Greene HL; Taunton OD; Wrensch M; Miller CL; Herman RH
    Am J Clin Nutr; 1976 Sep; 29(9):989-96. PubMed ID: 183494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary regulation of glycolytic enzymes. IX. The effect of oral, intramuscular and conjugated sex steroids on jejunal glycolytic enzyme activities in normal and castrated male and female rats.
    Stifel FB; Herman RH; Rosensweig NS
    Biochim Biophys Acta; 1970 Oct; 222(1):65-70. PubMed ID: 4248802
    [No Abstract]   [Full Text] [Related]  

  • 9. Lack of dietary regulation of jejunal glycolytic enzymes and disaccharidases in obesity: the role of insulin.
    Dubois R; Gotlin RW; Rodgerson DO
    Gastroenterology; 1975 Mar; 68(3):461-5. PubMed ID: 1112449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary regulation of glycolytic enzymes. V. Lack of effect of intramuscularly administered sex steroid on male and female rat jejunum.
    Stifel FB; Herman RH; Rosenweig NS
    Biochim Biophys Acta; 1970 Jun; 208(3):368-72. PubMed ID: 4319150
    [No Abstract]   [Full Text] [Related]  

  • 11. Control of jejunal sucrase and maltase activity by dietary sucrose or fructose in man. A model for the study of enzyme regulation in man.
    Rosensweig NS; Herman RH
    J Clin Invest; 1968 Oct; 47(10):2253-62. PubMed ID: 5676520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time response of jejunal sucrase and maltase activity to a high sucrose diet in normal man.
    Rosenweig NS; Herman RH
    Gastroenterology; 1969 Mar; 56(3):500-5. PubMed ID: 5766906
    [No Abstract]   [Full Text] [Related]  

  • 13. Adaptive changes in activities of enzymes of the carbohydrate metabolism in rat liver and jejunal mucosa to high fructose diets. Modifying effect of the fat content of the diet.
    Bode C; Bode JC
    Z Gastroenterol; 1980 Jan; 18(1):38-44. PubMed ID: 7385932
    [No Abstract]   [Full Text] [Related]  

  • 14. Decrease of aldolase and pyruvate kinase activity in erythrocytes of individuals with male hypogonadism as an expression of lack of androgen influence on the bone marrow.
    Medras M; Checińska E; Silber-Kasprzak D; Gwóźdź K
    Andrologia; 1983; 15(1):44-9. PubMed ID: 6837952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diet on lipid metabolism in experimental animals and man.
    Herman RH; Zakim D; Stifel FB
    Fed Proc; 1970; 29(3):1302-7. PubMed ID: 4245709
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of rat proximal intestinal glycolytic enzyme activity by ileal perfusion with glucose.
    Espinoza J; Clark SB; Hritz A; Rosensweig NS
    Gastroenterology; 1976 Aug; 71(2):295-8. PubMed ID: 939393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles.
    Enes P; Panserat S; Kaushik S; Oliva-Teles A
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):89-96. PubMed ID: 16343962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time response of human jejunal glycolytic enzymes to a high sucrose diet.
    Rosensweig NS; Stifel FB; Zakim D; Herman RH
    Gastroenterology; 1969 Aug; 57(2):143-6. PubMed ID: 5799672
    [No Abstract]   [Full Text] [Related]  

  • 19. Differences in the metabolism of dietary carbohydrates studied in the rat.
    Naismith DJ
    Proc Nutr Soc; 1971 Dec; 30(3):259-65. PubMed ID: 4949352
    [No Abstract]   [Full Text] [Related]  

  • 20. Testosterone replacement therapy in obese males.
    Drewa T; Olszewska-Słonina D; Chlosta P
    Acta Pol Pharm; 2011; 68(5):623-7. PubMed ID: 21928705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.