These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4832994)

  • 1. Electrical potential differences and ionic transport in the larva of the mosquito Aedes aegypti (L.).
    Stobbart RH
    J Exp Biol; 1974 Apr; 60(2):493-533. PubMed ID: 4832994
    [No Abstract]   [Full Text] [Related]  

  • 2. Active sodium and chloride transport by anal papillae of a salt water mosquito larva (Aedes campestris).
    Phillips JE; Meredith J
    Nature; 1969 Apr; 222(5189):168-9. PubMed ID: 5777039
    [No Abstract]   [Full Text] [Related]  

  • 3. The transepithelial voltage of the isolated anterior stomach of mosquito larvae (Aedes aegypti): pharmacological characterization of the serotonin-stimulated cells.
    Onken H; Moffett SB; Moffett DF
    J Exp Biol; 2004 May; 207(Pt 11):1779-87. PubMed ID: 15107433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of some anions and cations upon the fluxes and net uptake of chloride in the larva of Aëdes aegypti (L.), and the nature of the uptake mechanisms for sodium and chloride.
    Stobbart RH
    J Exp Biol; 1967 Aug; 47(1):35-57. PubMed ID: 6058980
    [No Abstract]   [Full Text] [Related]  

  • 5. The secretion of hyperosmotic fluid by the rectum of a saline-water mosquito larva, Aedes taeniorhynchus.
    Bradley TJ; Phillips JE
    J Exp Biol; 1975 Oct; 63(2):331-42. PubMed ID: 1202126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of external salinity on drinking rate and rectal secretion in the larvae of the saline-water mosquito Aedes taeniorhynchus.
    Bradley TJ; Phillips JE
    J Exp Biol; 1977 Feb; 66(1):97-110. PubMed ID: 858994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The location and mechanism of hyperosmotic fluid secretion in the rectum of the saline-water mosquito larvae Aedes taeniorhynchus.
    Bradley TJ; Phillips JE
    J Exp Biol; 1977 Feb; 66(1):111-26. PubMed ID: 858991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for Na plus-H plus and Cl minus-HCO3 minus exchanges during independent sodium and chloride uptake by the larva of the mosquito Aëdes aegypti (L.).
    Stobbart RH
    J Exp Biol; 1971 Feb; 54(1):19-27. PubMed ID: 5549762
    [No Abstract]   [Full Text] [Related]  

  • 9. THE EFFECT OF SOME ANIONS AND CATIONS UPON THE FLUXES AND NET UPTAKE OF SODIUM IN THE LARVA OF AUEDES AEGYPTI (L).
    STOBBART RH
    J Exp Biol; 1965 Feb; 42():29-43. PubMed ID: 14294947
    [No Abstract]   [Full Text] [Related]  

  • 10. Active transport of magnesium by the malpighian tubules of the larvae of the mosquito, Aedes campestris.
    Phillips JE; Maddrell SH
    J Exp Biol; 1974 Dec; 61(3):761-71. PubMed ID: 4443756
    [No Abstract]   [Full Text] [Related]  

  • 11. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of sodium uptake by the larva of the mosquito Aëdes aegypti (L.).
    Stobbart RH
    J Exp Biol; 1971 Feb; 54(1):29-66. PubMed ID: 5549769
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of rectal secretion in saline-water mosquito larvae living in waters of diverse ionic composition.
    Bradley TJ; Philips JE
    J Exp Biol; 1977 Feb; 66(1):83-96. PubMed ID: 870604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti.
    Scott BN; Yu MJ; Lee LW; Beyenbach KW
    J Exp Biol; 2004 Apr; 207(Pt 10):1655-63. PubMed ID: 15073198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti.
    Jonusaite S; Kelly SP; Donini A
    J Comp Physiol B; 2016 Jul; 186(5):589-602. PubMed ID: 27004691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes.
    Donini A; O'Donnell MJ
    J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dependence of electrical transport pathways in Malpighian tubules on ATP.
    Wu DS; Beyenbach KW
    J Exp Biol; 2003 Jan; 206(Pt 2):233-43. PubMed ID: 12477894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial ionic transport and electrical polarization in the large bowel.
    Rask-Madsen J
    Scand J Gastroenterol; 1974; 9(3):223-9. PubMed ID: 4605397
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of saline osmolarity on the steady-state level of water and electrolytes in kidney cortex cells.
    Kleinzeller A; Nedvídková J; Knotková A
    Biochim Biophys Acta; 1967 May; 135(2):286-99. PubMed ID: 6037360
    [No Abstract]   [Full Text] [Related]  

  • 20. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti.
    Del Duca O; Nasirian A; Galperin V; Donini A
    J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.