These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4833242)

  • 1. Pial vessels transport of substances from cerebrospinal fluid to blood.
    Levin E; Sepulveda FV; Yudilevich DL
    Nature; 1974 May; 249(454):266-8. PubMed ID: 4833242
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid.
    Wright PM; Nogueira GJ; Levin E
    Exp Brain Res; 1971; 113(3):294-305. PubMed ID: 5098308
    [No Abstract]   [Full Text] [Related]  

  • 3. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.
    Meijer RI; Gray SM; Aylor KW; Barrett EJ
    Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1132-H1138. PubMed ID: 27591216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impermeability of newt cerebral and pial capillaries to exogenous peroxidase. A light and electron microscope study.
    Ciani F; Del Grande P; Franceschini V; Caniato G; Minelli G
    Basic Appl Histochem; 1983; 27(4):297-302. PubMed ID: 6360137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of drainage of the cerebrospinal fluid.
    Davson H; Domer FR; Hollingsworth JR
    Brain; 1973 Jun; 96(2):329-36. PubMed ID: 4197586
    [No Abstract]   [Full Text] [Related]  

  • 6. [Ways of elimination of substances injected into the subarachnoid space of the brain (experimental study with radioactive isotopes)].
    Baron MA; Liass MF; Maĭorova NA; Mikheeva EV; Nikitina LG
    Med Radiol (Mosk); 1975 Nov; 20(11):55-63. PubMed ID: 775234
    [No Abstract]   [Full Text] [Related]  

  • 7. The sealing action of subarachnoid blood.
    McQueen JD; Northrup BE; Leibrock LG; Morooney K
    Acta Neurol Latinoam; 1971; 1 Suppl():Suppl 1:89-98. PubMed ID: 5172639
    [No Abstract]   [Full Text] [Related]  

  • 8. Subarachnoid versus ventricular perfusion in the rabbit.
    Domer FR; Davson H; Hollingsworth JR
    Brain Res; 1973 Aug; 58(1):81-94. PubMed ID: 4354379
    [No Abstract]   [Full Text] [Related]  

  • 9. The perivascular pathways for influx of cerebrospinal fluid are most efficient in the midbrain.
    Dobson H; Sharp MM; Cumpsty R; Criswell TP; Wellman T; Finucane C; Sullivan JM; Weller RO; Verma A; Carare RO
    Clin Sci (Lond); 2017 Nov; 131(22):2745-2752. PubMed ID: 29021222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and absorption of cerebrospinal fluid in the spinal subarachnoid space of the dog.
    del Pozo-Reyes D; Loyo-Varela M; Estañol-Vidal B; Mateos-Gómez JH
    Arch Invest Med (Mex); 1978; 9(3):511-8. PubMed ID: 708188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pial vessel permeability to tracers using cranial windows.
    Mayhan WG
    Methods Mol Med; 2003; 89():121-31. PubMed ID: 12958416
    [No Abstract]   [Full Text] [Related]  

  • 12. Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution.
    Yudilevich DL; De Rose N
    Am J Physiol; 1971 Mar; 220(3):841-6. PubMed ID: 4925747
    [No Abstract]   [Full Text] [Related]  

  • 13. Further studies on the difference between ventricular and subarachnoid perfusion.
    McComb JG; Davson H; Hollingsworth JR
    Brain Res; 1975 May; 89(1):81-91. PubMed ID: 807296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodide transport from the spinal subarachnoid fluid in the cat.
    Hammerstad JP; Lorenzo AV; Cutler RW
    Am J Physiol; 1969 Feb; 216(2):353-8. PubMed ID: 5766989
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine.
    Zhang C; Lin J; Wei F; Song J; Chen W; Shan L; Xue R; Wang G; Tao J; Zhang G; Xu GY; Wang L
    Life Sci; 2018 May; 201():150-160. PubMed ID: 29605446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of mechanisms for the elimination of organic acids from the brain and cerebrospinal fluid system of the rat: rapid efflux of ( 3 H)para-aminohippuric acid following intrathecal infusion.
    Bass NH; Lundborg P
    Brain Res; 1973 Jun; 56():285-98. PubMed ID: 4740373
    [No Abstract]   [Full Text] [Related]  

  • 17. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum.
    Zhang ET; Inman CB; Weller RO
    J Anat; 1990 Jun; 170():111-23. PubMed ID: 2254158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical relationships of the pia mater to cerebral blood vessels in man.
    Hutchings M; Weller RO
    J Neurosurg; 1986 Sep; 65(3):316-25. PubMed ID: 3734882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection of the blood-brain barrier by hypercapnia during acute hypertension.
    Baumbach GL; Mayhan WG; Heistad DD
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H282-7. PubMed ID: 3740284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transendothelial DC potential of rat blood-brain barrier vessels in situ.
    Revest PA; Jones HC; Abbott NJ
    Adv Exp Med Biol; 1993; 331():71-4. PubMed ID: 8333349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.