These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 4837545)

  • 21. Capillary flow: history, experiments and theory.
    Skalak R; Chien S
    Biorheology; 1981; 18(3-6):307-30. PubMed ID: 7034803
    [No Abstract]   [Full Text] [Related]  

  • 22. Blood flow in the lung.
    Collins R; Maccario JA
    J Biomech; 1979; 12(5):373-95. PubMed ID: 447757
    [No Abstract]   [Full Text] [Related]  

  • 23. Rheological aspects of sickle cell disease.
    Klug PP; Lessin LS; Radice P
    Arch Intern Med; 1974 Apr; 133(4):577-90. PubMed ID: 4594395
    [No Abstract]   [Full Text] [Related]  

  • 24. [Blood flow in the capillaries].
    Barras JP
    Helv Med Acta; 1969 Mar; 34(6):468-77. PubMed ID: 5779214
    [No Abstract]   [Full Text] [Related]  

  • 25. Low Reynolds number steady state flow through a branching network of rigid vessels: I. A mixture theory.
    Huyghe JM; Oomens CW; van Campen KH; Heethaar RM
    Biorheology; 1989; 26(1):55-71. PubMed ID: 2804274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mathematical model of the flow in the axial plasmatic gaps of the smaller vessels.
    Bugliarello G; Hsiao GC
    Biorheology; 1970 Jun; 7(1):5-36. PubMed ID: 5481180
    [No Abstract]   [Full Text] [Related]  

  • 27. A hydrodynamic interpretation of crisis in sickle cell anemia.
    Cima LG; Discher DE; Tong J; Williams MC
    Microvasc Res; 1994 Jan; 47(1):41-54. PubMed ID: 8022313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood flow in capillaries.
    Lin KL; Lopez L; Hellums JD
    Microvasc Res; 1973 Jan; 5(1):7-19. PubMed ID: 4684758
    [No Abstract]   [Full Text] [Related]  

  • 29. Capillary blood flow. II. Deformable model cells in tube flow.
    Sutera SP; Seshadri V; Croce PA; Hochmuth RM
    Microvasc Res; 1970 Oct; 2(4):420-33. PubMed ID: 5523939
    [No Abstract]   [Full Text] [Related]  

  • 30. Theoretical models of capillary flow.
    Skalak R
    Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanics of red-cell motion through very narrow capillaries.
    Fitz-Gerald JM
    Proc R Soc Lond B Biol Sci; 1969 Nov; 174(1035):193-227. PubMed ID: 4391180
    [No Abstract]   [Full Text] [Related]  

  • 32. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capillary blood flow. 3. Deformable model cells compared to erythrocytes in vitro.
    Seshadri V; Hochmuth RM; Croce PA; Sutera SP
    Microvasc Res; 1970 Oct; 2(4):434-42. PubMed ID: 5523940
    [No Abstract]   [Full Text] [Related]  

  • 34. Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla.
    Marsh DJ; Segel LA
    Am J Physiol; 1971 Sep; 221(3):817-28. PubMed ID: 5570338
    [No Abstract]   [Full Text] [Related]  

  • 35. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical models of capillary flow: a critical review.
    Gross JF; Aroesty J
    Biorheology; 1972 Dec; 9(4):225-64. PubMed ID: 4579396
    [No Abstract]   [Full Text] [Related]  

  • 37. Effects of microgravity on microcirculation.
    Majhi SN; Nair VR
    Microgravity Sci Technol; 1990 Sep; 3(2):117-20. PubMed ID: 11541479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation studies of blood flow through stenoses in the microcirculation.
    Tickner EG; Sacks AH
    Microvasc Res; 1971 Jul; 3(3):337-42. PubMed ID: 5111907
    [No Abstract]   [Full Text] [Related]  

  • 39. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.
    Schmid-Schönbein H
    Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mathematical model of the flow of blood cells in fine capillaries.
    Ducharme R; Kapadia P; Dowden J
    J Biomech; 1991; 24(5):299-306. PubMed ID: 2050706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.