These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 4837613)

  • 1. Estimation of diffusible auxin under saline growth conditions.
    Naqvi SM; Ansari R
    Experientia; 1974 Apr; 30(4):350. PubMed ID: 4837613
    [No Abstract]   [Full Text] [Related]  

  • 2. Auxin transport in roots.
    Wilkins MB; Scott TK
    Nature; 1968 Sep; 219(5161):1388-9. PubMed ID: 5678027
    [No Abstract]   [Full Text] [Related]  

  • 3. [Plant growth and development, and auxin polar transport in space conditions].
    Ueda J
    Biol Sci Space; 1999 Sep; 13(3):122-3. PubMed ID: 12532986
    [No Abstract]   [Full Text] [Related]  

  • 4. What remains of the Cholodny-Went theory? Lateral auxin translocation as a key step mediating light-gradient perception and phototropic differential growth.
    Iino M
    Plant Cell Environ; 1992 Sep; 15(7):773-4. PubMed ID: 11541807
    [No Abstract]   [Full Text] [Related]  

  • 5. Gravity-induced asymmetric distribution of a plant growth hormone.
    Bandurski RS; Schulze A; Momonoki Y
    Physiologist; 1984; 27(6 Suppl):S123-6. PubMed ID: 11539003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.
    Livanos P; Giannoutsou E; Apostolakos P; Galatis B
    Plant Signal Behav; 2015; 10(3):e984531. PubMed ID: 25831267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What remains of the Cholodny-Went theory? Assymetric redistribution of auxin need only occur over the distance of one cell width.
    Jones AM
    Plant Cell Environ; 1992 Sep; 15(7):775-6. PubMed ID: 11541808
    [No Abstract]   [Full Text] [Related]  

  • 9. Auxin biosynthesis in maize kernels.
    Glawischnig E; Tomas A; Eisenreich W; Spiteller P; Bacher A; Gierl A
    Plant Physiol; 2000 Jul; 123(3):1109-19. PubMed ID: 10889260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Procedures for chemical fixation in immunohistochemical analyses of PIN proteins regulating polar auxin transport: Relevance to spaceflight experiments.
    Kamada M; Miyamoto K; Oka M; Uheda E; Ueda J; Higashibata A
    Life Sci Space Res (Amst); 2018 Aug; 18():42-51. PubMed ID: 30100147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.
    Sugawara S; Mashiguchi K; Tanaka K; Hishiyama S; Sakai T; Hanada K; Kinoshita-Tsujimura K; Yu H; Dai X; Takebayashi Y; Takeda-Kamiya N; Kakimoto T; Kawaide H; Natsume M; Estelle M; Zhao Y; Hayashi K; Kamiya Y; Kasahara H
    Plant Cell Physiol; 2015 Aug; 56(8):1641-54. PubMed ID: 26076971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.
    Contreras-Cornejo HA; Macías-Rodríguez L; Alfaro-Cuevas R; López-Bucio J
    Mol Plant Microbe Interact; 2014 Jun; 27(6):503-14. PubMed ID: 24502519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.
    Kriechbaumer V; Seo H; Park WJ; Hawes C
    J Exp Bot; 2015 Sep; 66(19):6009-20. PubMed ID: 26139824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of growth regulators on peroxidation processes in corn seedlings under salt stress].
    Kurylenko IM; Palladina TO
    Ukr Biokhim Zh (1999); 2001; 73(6):56-60. PubMed ID: 12199081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin biosynthesis in maize.
    Kriechbaumer V; Park WJ; Gierl A; Glawischnig E
    Plant Biol (Stuttg); 2006 May; 8(3):334-9. PubMed ID: 16807825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity.
    Bastías E; Fernández-García N; Carvajal M
    Plant Biol (Stuttg); 2004 Jul; 6(4):415-21. PubMed ID: 15248124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl.
    Jones AM; Cochran DS; Lamerson PM; Evans ML; Cohen JD
    Plant Physiol; 1991; 97(1):352-8. PubMed ID: 11538374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors.
    Lee JS; Mulkey TJ; Evans ML
    Planta; 1984; 160():536-43. PubMed ID: 11540830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings.
    Nonhebel HM
    J Exp Bot; 1986 Nov; 37(184):1691-7. PubMed ID: 11539687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays.
    Young LM; Evans ML; Hertel R
    Plant Physiol; 1990; 92(3):792-6. PubMed ID: 11537998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.