These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Morpho-physiological consideration on synaptic transmission in the amphibian sympathetic ganglion. Uchizono K; Ohsawa K Acta Physiol Pol; 1973; 24(1):205-14. PubMed ID: 4351940 [No Abstract] [Full Text] [Related]
5. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. Traub RD; Miles R; Wong RK J Neurophysiol; 1987 Oct; 58(4):739-51. PubMed ID: 3681392 [TBL] [Abstract][Full Text] [Related]
6. Local specification of relative strengths of synapses between different abdominal stretch-receptor axons and their common target neurons. Nakagawa H; Mulloney B J Neurosci; 2001 Mar; 21(5):1645-55. PubMed ID: 11222655 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of long-lasting inhibition of a bursting pacemaker neuron. Parnas I; Strumwasser F J Neurophysiol; 1974 Jul; 37(4):609-20. PubMed ID: 4837771 [No Abstract] [Full Text] [Related]
8. Synaptic events in sympathetic ganglia. Kuba K; Koketsu K Prog Neurobiol; 1978; 11(2):77-169. PubMed ID: 33420 [No Abstract] [Full Text] [Related]
9. Synaptic plasticity: the effect of the action potential in the postsynaptic neuron. Wurtz RH; Castellucci VF; Nusrala JM Exp Neurol; 1967 Jul; 18(3):350-68. PubMed ID: 6028149 [No Abstract] [Full Text] [Related]
10. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Kuno M Physiol Rev; 1971 Oct; 51(4):647-78. PubMed ID: 4331079 [No Abstract] [Full Text] [Related]
12. Synaptic input to cells of the rabbit superior cervical ganglion. Wallis DI; North RA Pflugers Arch; 1978 May; 374(2):145-52. PubMed ID: 208051 [No Abstract] [Full Text] [Related]
13. Phosphoinositides and other phospholipids in sympathetic ganglia and nerve trunks of rats. Effects of neuronal activity and inositol analogs ( - and -hexachlorocyclohexane (lindane)) on ( 32 P)-labelling, synaptic transmission and axonal conduction. White GL; Larrabee MG J Neurochem; 1973 Mar; 20(3):783-98. PubMed ID: 4122213 [No Abstract] [Full Text] [Related]
14. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Baranyi A; Szente MB; Woody CD J Neurophysiol; 1993 Jun; 69(6):1850-64. PubMed ID: 8350126 [TBL] [Abstract][Full Text] [Related]
15. [Control of the electrical properties of the somatic neuromembrane by intracellular pO2]. Chalazonitis N Actual Neurophysiol (Paris); 1968; 8():1-22. PubMed ID: 5704607 [No Abstract] [Full Text] [Related]
16. Organization of inhibition in abdominal ganglion of Aplysia. II. Posttetanic potentiation, heterosynaptic depression, and increments in frequency of inhibitory postsynaptic potentials. Waziri R; Kandel ER; Frazier WT J Neurophysiol; 1969 Jul; 32(4):509-19. PubMed ID: 4308865 [No Abstract] [Full Text] [Related]
17. Differential block at high frequency of branches of a single axon innervating two muscles. Parnas I J Neurophysiol; 1972 Nov; 35(6):903-14. PubMed ID: 4347420 [No Abstract] [Full Text] [Related]
18. Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. Pinsker HM J Neurophysiol; 1977 May; 40(3):544-56. PubMed ID: 195017 [No Abstract] [Full Text] [Related]
19. The organization of subpopulations in the abdominal ganglion of Aplysia. Kandel ER UCLA Forum Med Sci; 1969; 11():71-111. PubMed ID: 4319854 [No Abstract] [Full Text] [Related]
20. Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglion of Aplysia. Kupfermann I; Kandel ER J Neurophysiol; 1970 Nov; 33(6):865-76. PubMed ID: 5485408 [No Abstract] [Full Text] [Related] [Next] [New Search]