These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4838219)

  • 1. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell-wall inhibition. VI. Biosynthesis of the galactosyldiglycerides.
    Veerkamp JH
    Biochim Biophys Acta; 1974 Apr; 348(1):23-34. PubMed ID: 4838219
    [No Abstract]   [Full Text] [Related]  

  • 2. Glycolipids of a halotolerant, moderately halophilic bacterium. II. Biosynthesis of glucuronosyldiglyceride by cell-free particles.
    Stern N; Tietz A
    Biochim Biophys Acta; 1973 Jan; 296(1):136-44. PubMed ID: 4693501
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. IV. Galactolipid composition.
    Exterkate FA; Veerkamp JH
    Biochim Biophys Acta; 1971 May; 231(3):545-9. PubMed ID: 5282823
    [No Abstract]   [Full Text] [Related]  

  • 4. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. V. Structure of the galactosyldiglycerides.
    Veerkamp JH
    Biochim Biophys Acta; 1972 Jul; 273(2):359-67. PubMed ID: 4342947
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. VII. Structure of the phosphogalactolipids.
    Veerkamp JH; van Schaik FW
    Biochim Biophys Acta; 1974 Jun; 348(3):370-87. PubMed ID: 4367972
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. I. Composition of lipids.
    Exterkate FA; Veerkamp JH
    Biochim Biophys Acta; 1969 Jan; 176(1):65-77. PubMed ID: 5766029
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of cardiolipin in mitochondria.
    Davidson JB; Stanacev NZ
    Can J Biochem; 1971 Oct; 49(10):1117-24. PubMed ID: 4334991
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the biosynthesis of glucolipid in Tetrahymena pyriformis.
    Keenan RW; Matula JM; Holloman L
    Biochim Biophys Acta; 1973 Oct; 326(1):84-92. PubMed ID: 4202033
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of mannosyl--and glucosyl-phosphoryl polyprenols in Mycobacterium smegmatis. Evidence for oligosaccharide-phosphoryl-polyprenols.
    Schultz J; Elbein AD
    Arch Biochem Biophys; 1974 Jan; 160(1):311-22. PubMed ID: 4828528
    [No Abstract]   [Full Text] [Related]  

  • 10. The metabolism of glyceride glycolipids. I. Biosynthesis of monoglucosyl diglyceride and diglucosyl diglyceride by glucosyltransferase pathways in Streptococcus faecalis.
    Pieringer RA
    J Biol Chem; 1968 Sep; 243(18):4894-903. PubMed ID: 4972101
    [No Abstract]   [Full Text] [Related]  

  • 11. Esterification of free fatty acids by subcellular preparations of rat adipose tissue.
    Roncari DA; Hollenberg CH
    Biochim Biophys Acta; 1967 Jun; 137(3):446-63. PubMed ID: 6049941
    [No Abstract]   [Full Text] [Related]  

  • 12. The identification of lipid acceptor and the biosynthesis of lipid-linked glucose in Bacillus stearothermophilus.
    Sasak W; Chojnacki T
    Arch Biochem Biophys; 1977 Jun; 181(2):402-10. PubMed ID: 20047
    [No Abstract]   [Full Text] [Related]  

  • 13. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. 3. Morphological structure and osmotic properties of the protoplasts and membrane composition.
    Exterkate FA; Vrensen GF; Veerkamp JH
    Biochim Biophys Acta; 1970; 219(1):141-54. PubMed ID: 5473501
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolic relationships between phospho(galacto)lipids in Bifidobacterium bifidum var. pennsylvanicus.
    van Schaik FW; Veerkamp JH
    FEBS Lett; 1976 Aug; 67(1):13-6. PubMed ID: 955100
    [No Abstract]   [Full Text] [Related]  

  • 15. [Comparative studies on the effects of bivalent cations on the respiration of the normal form, the penicillin-spheroplasts, and the stable L-form of Proteus mirabilis].
    Zickler F
    Z Allg Mikrobiol; 1965; 5(2):164-76. PubMed ID: 5877736
    [No Abstract]   [Full Text] [Related]  

  • 16. Glycosyl transfer activities in intact liver cells of embryonic chick.
    Arnold D; Hommel E; Risse HJ
    Biochem Biophys Res Commun; 1973 Sep; 54(1):100-7. PubMed ID: 4795363
    [No Abstract]   [Full Text] [Related]  

  • 17. Divalent metal ion effects on a mutant histidinol phosphate phosphatase from Salmonella typhimurium.
    Houston LL; Graham ME
    Arch Biochem Biophys; 1974 Jun; 162(2):513-22. PubMed ID: 4366369
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucosylation of lipopolysaccharide in Salmonella: biosynthesis nof O antigen factor n12 2 . II. Structure of the lipid intermediate.
    Nikaido K; Nikaido H
    J Biol Chem; 1971 Jun; 246(12):3912-9. PubMed ID: 4327192
    [No Abstract]   [Full Text] [Related]  

  • 19. Genetic control and biosynthesis of two new flavone-glycosides in the petals of Melandrium album.
    van Brederode J; van Nigtevecht G
    Biochem Genet; 1974 Jan; 11(1):65-81. PubMed ID: 4817531
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of detergents on ADP translocation in mitochondria.
    DuszyƄski J; Wojtczak L
    FEBS Lett; 1974 Mar; 40(1):72-6. PubMed ID: 4851623
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.