These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 483865)

  • 21. Degradation of mono-chlorophenols by a mixed microbial community via a meta- cleavage pathway.
    Farrell A; Quilty B
    Biodegradation; 1999; 10(5):353-62. PubMed ID: 10870551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrophobic adsorption of aromatic compounds on polyurethane foam as a carbon source for Pseudomonas growth.
    Enkiri F; Hulen C; Legault-Demare J
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):539-45. PubMed ID: 8597557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research advances in biodegradation of chlorophenols in environment].
    Jiang M; Niu S; Zhan H; Yuan J; Chen H
    Ying Yong Sheng Tai Xue Bao; 2003 Jun; 14(6):1003-6. PubMed ID: 12974015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening test of the biodegradative capability of a new strain of Pseudomonas gladioli (BSU 45124) on some xenobiotic organics.
    Dawson TD; Chang FH
    Bull Environ Contam Toxicol; 1992 Jul; 49(1):10-7. PubMed ID: 1392282
    [No Abstract]   [Full Text] [Related]  

  • 25. Induction characteristics of reductive dehalogenation in the ortho-halophenol-respiring bacterium, Anaeromyxobacter dehalogenans.
    He Q; Sanford RA
    Biodegradation; 2002; 13(5):307-16. PubMed ID: 12688583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol).
    Saéz PB; Rittmann BE
    Biodegradation; 1993; 4(1):3-21. PubMed ID: 7763852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Biodestruction of natural and artificial compounds by bacteria of the genus Pseudomonas].
    Kalmazan LA; Tul'chinskaia VP
    Mikrobiol Zh (1978); 1980; 42(1):112-20. PubMed ID: 6988680
    [No Abstract]   [Full Text] [Related]  

  • 28. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia.
    Kilbane JJ; Chatterjee DK; Karns JS; Kellogg ST; Chakrabarty AM
    Appl Environ Microbiol; 1982 Jul; 44(1):72-8. PubMed ID: 7125648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria.
    Spokes JR; Walker N
    Arch Mikrobiol; 1974 Mar; 96(2):125-34. PubMed ID: 4836257
    [No Abstract]   [Full Text] [Related]  

  • 30. Effective synthesis of sulfate metabolites of chlorinated phenols.
    Lehmler HJ; He X; Li X; Duffel MW; Parkin S
    Chemosphere; 2013 Nov; 93(9):1965-71. PubMed ID: 23906814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri.
    Kozlovsky SA; Kunc F
    Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2.
    Nowak A; Mrozik A
    J Environ Manage; 2018 Jun; 215():216-229. PubMed ID: 29573672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristics of 4-chlorophenol degradation by a soil bacterium Acinetobacter sp].
    Wu WZ; Feng YC; Wang JL
    Huan Jing Ke Xue; 2008 Nov; 29(11):3185-8. PubMed ID: 19186825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Enhancement of biodegradation of 4-chlorophenol during co-metabolic process by immobilized-cells of Pseudomonas putida].
    Li Y; Hu HY
    Huan Jing Ke Xue; 2007 Sep; 28(9):2112-6. PubMed ID: 17990567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of 4-chlorophenol by Azotobacter sp. GP1: structure of the meta cleavage product of 4-chlorocatechol.
    Wieser M; Eberspächer J; Vogler B; Lingens F
    FEMS Microbiol Lett; 1994 Feb; 116(1):73-8. PubMed ID: 8132157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of hydroxylated and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution.
    Hirvonen A; Trapido M; Hentunen J; Tarhanen J
    Chemosphere; 2000 Oct; 41(8):1211-8. PubMed ID: 10901249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols.
    Gerritse J; Renard V; Pedro Gomes TM; Lawson PA; Collins MD; Gottschal JC
    Arch Microbiol; 1996 Feb; 165(2):132-40. PubMed ID: 8593100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities.
    Shimp RJ; Pfaender FK
    Appl Environ Microbiol; 1987 Jul; 53(7):1496-9. PubMed ID: 3662503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas pickettii: a common soil and groundwater aerobic bacteria with pathogenic and biodegradation properties.
    Bruins MR; Kapil S; Oehme FW
    Ecotoxicol Environ Saf; 2000 Oct; 47(2):105-11. PubMed ID: 11023687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria.
    Wang CC; Lee CM; Lu CJ; Chuang MS; Huang CZ
    Chemosphere; 2000 Dec; 41(12):1873-9. PubMed ID: 11061309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.