These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4838796)

  • 1. Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat.
    Kríz N; Syková E; Ujec E; Vyklický L
    J Physiol; 1974 Apr; 238(1):1-15. PubMed ID: 4838796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
    Prokopová-Kubinová S; Syková E
    J Neurosci Res; 2000 Nov; 62(4):530-8. PubMed ID: 11070496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E
    J Exp Biol; 1981 Dec; 95():93-109. PubMed ID: 6278046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat.
    ten Bruggencate G; Lux HD; Liebl L
    Pflugers Arch; 1974; 349(4):301-17. PubMed ID: 4472242
    [No Abstract]   [Full Text] [Related]  

  • 6. Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1974 Aug; 52(4):852-71. PubMed ID: 4425984
    [No Abstract]   [Full Text] [Related]  

  • 7. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G; Kríz N; Syková E
    J Physiol; 1981 Nov; 320():57-72. PubMed ID: 6976435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures.
    Lothman EW; Somjen GG
    Electroencephalogr Clin Neurophysiol; 1976 Sep; 41(3):253-67. PubMed ID: 60213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-tetanic changes of bilateral dorsal root potentials evoked by stimulation of the cutaneous afferents.
    Holobut W; Niechaj A
    Experientia; 1975 Nov; 31(11):1294-5. PubMed ID: 1204777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW; Somjen GG
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume.
    Syková E
    Can J Physiol Pharmacol; 1987 May; 65(5):1058-66. PubMed ID: 3621032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.
    Davidoff RA; Hackman JC; Holohean AM; Vega JL; Zhang DX
    J Physiol; 1988 Mar; 397():291-306. PubMed ID: 3261795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord.
    Jiménez I; Rudomín P; Solodkin M; Vyklický L
    J Neurophysiol; 1984 Nov; 52(5):921-40. PubMed ID: 6096522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of increases in extracellular potassium to primary afferent depolarization in the bullfrog spinal cord.
    Shefner SA; Levy RA
    Brain Res; 1981 Feb; 205(2):321-35. PubMed ID: 6258714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of endogenous opiates and extracellular K+ accumulation in the inhibition of frog spinal reflexes by electrical skin stimulation.
    Syková E; Kríz N; Hájek I
    Physiol Bohemoslov; 1985; 34(6):548-61. PubMed ID: 3003770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular pH and stimulated neurons.
    Syková E; Svoboda J; Chvátal A; Jendelová P
    Ciba Found Symp; 1988; 139():220-35. PubMed ID: 3203566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A; Jendelová P; Kríz N; Syková E
    Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.